Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Provably Correct Networks

Objective

Networks are the backbone of our society, but configuring them is error-prone and tedious: misconfigured networks result in headline grabbing network outages that affect many users and hurt company revenues while security breaches that endanger millions of customers. There are currently no guarantees that deployed networks correctly implement their operator’s policy.

Existing research has focused on two directions: a) low level analysis and instrumentation of real networking code prevents memory bugs in individual network elements, but does not capture network-wide properties desired by operators such as reachability or loop freedom; b) high-level analysis of network-wide properties to verify operator policies on abstract network models; unfortunately, there are no guarantees that the models are an accurate representation of the real network code, and often low-level errors invalidate the conclusions of the high-level analysis.

We propose to achieve provably correct networks by simultaneously targeting both low-level security concerns and network-wide policy compliance checking. Our key proposal is to rely on exhaustive network symbolic execution for verification and to automatically generate provably correct implementations from network models. Generating efficient code that is equivalent to the model poses great challenges that we will address with three key contributions:

a) We will develop a novel theoretical equivalence framework based on symbolic execution semantics, as well as equivalence-preserving model transformations to automatically optimize network models for runtime efficiency.

b) We will develop compilers that take network models and generate functionally equivalent and efficient executable code for different targets (e.g. P4 and C).

c) We will design algorithms that generate and insert runtime guards that ensure correctness of the network with respect to the desired policy even when legacy boxes are deployed in the network.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-STG

See all projects funded under this call

Host institution

UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 325 000,00
Address
SPLAIUL INDEPENDENTEI 313 SECT 6
060042 Bucharest
Romania

See on map

Region
Macroregiunea Trei Bucureşti-Ilfov Bucureşti
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 325 000,00

Beneficiaries (1)

My booklet 0 0