Objective
Seismic observations imply that slab descent and plume ascent are impeded in the mid-mantle (MM) (depths of 660–1000 km, pressures of 23–40 GPa). A recent evaluation of viscosity variation suggested the presence of a viscosity increase or maximum in the MM that could drag the slab and plume motions. The viscosity variation may be caused by a change in the rheology of bridgmanite (Brg), the dominant mineral in the lower mantle (LM). The absence of seismic anisotropy suggests the dominance of diffusion creep in the majority of the LM. Element diffusivities and grain size are two essential factors of diffusion creep, and defect chemistry controls diffusivity. Hence, this project will determine defect chemistry, diffusivity and the grain growth rate of Brg. Since plume ascent originates in deep parts in the LM, these three properties need to be determined at pressures up to 80 GPa. Although use of a large-volume press (LVP) is vital for obtaining reliable high-pressure experimental data on mineral and rock properties, conventional LVP with carbide anvils can only generate 27 GPa. Recent LVP technology can generate over 100 GPa using sintered diamond (SD) anvils, but the process is currently very difficult for practical use. We developed a method to generate 50 GPa using hard carbide (HWC) anvils that allows practical investigation of Brg properties at mantle temperatures. We will investigate the three properties of Brg up to 50 GPa using LVP with HWC. We will develop LVP technology with SD to reliably generate pressures up to 80 GPa at mantle temperatures, and we will investigate the Brg properties under these conditions. These data will enable numerical modelling of slab and plume dynamics to explain the seismic observations. Through such modelling, we will investigate how materials are transported between the surface and deep mantle reservoirs, which can provide insight into Earth’s evolution and surface habitability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences chemical sciences inorganic chemistry inorganic compounds
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
95447 BAYREUTH
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.