Project description
Using a deep learning toolkit to improve core robotic functionalities
In recent years, there has been a rapid increase in both demand for and interest in robotics. This is because robots provide possible solutions for the automation industry as well as new tools to assist in scientific research; they can also be used for commercial purposes. But despite these rapid advances, the robotics industry has been facing a lot of challenges, one of them being how to best prepare the robot for various situations and environments. The EU-funded OpenDR project aims to develop and introduce a modular, open and non-proprietary toolkit that will assist with the development and assortment of core robot functionalities while also using deep learning to improve their perception and cognition capabilities.
Objective
The aim of OpenDR is to develop a modular, open and non-proprietary tool kit for core robotic functionalities by harnessing deep learning to provide advanced perception and cognition capabilities, meeting in this way the general requirements of robotics applications in the applications areas of Healthcare, Agri-Food and Agile Production. The term toolkit in OpenDR refers to a set of deep learning software functions, packages and utilities used to help roboticists to develop and test a robotic application that incorporates deep learning. OpenDR will provide the means to link the robotics applications to software libraries (deep learning frameworks, e.g. tensorflow) and to link it with the operating environment (ROS). OpenDR focuses on the AI and Cognition core technology in order to provide tools that make robotic systems cognitive, giving them the ability to a) interact with people and environments by developing deep learning methods for human centric and environment active perception and cognition, b) learn and categorise by developing deep learning tools for training and inference in common robotics settings, and c) make decisions and derive knowledge by developing deep learning tools for cognitive robot action and decision making. As a result, the developed OpenDR toolkit will also enable cooperative human-robot interaction as well as the development of cognitive mechatronics where sensing and actuation are closely coupled with cognitive systems thus contributing to another two core technologies beyond AI and Cognition. OpenDR will develop, train, deploy and evaluate deep learning models that improve the technical capabilities of the core technologies beyond the current state of the art. It will enable a greater range of robotics applications that can be demonstrated at TRL 3 and above, thus lowering the technical barriers within the prioritised application areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics cognitive robots
- engineering and technology mechanical engineering mechatronics
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
546 36 THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.