Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Open Deep Learning Toolkit for Robotics

Description du projet

Utiliser une boîte à outils d’apprentissage profond pour améliorer les fonctionnalités robotiques centrales

Ces dernières années, la demande et l’intérêt pour la robotique ont connu une croissance rapide. Ceci parce que les robots offrent des solutions possibles pour l’industrie de l’automatisation ainsi que de nouveaux outils pour aider à la recherche scientifique; ils peuvent également être utilisés pour des usages commerciaux. Mais malgré ces avancées rapides, l’industrie de la robotique a été confrontée à de nombreux défis, l’un d’eux consistant à savoir comment préparer au mieux le robot à des situations et des environnements différents. Le projet OpenDR, financé par l’UE, a pour objectif de développer et de lancer une boîte à outils modulaire, ouverte et non propriétaire qui aidera au développement et à l’assortiment des fonctionnalités de base des robots tout en utilisant l’apprentissage profond pour améliorer leurs capacités de perception et de cognition.

Objectif

The aim of OpenDR is to develop a modular, open and non-proprietary tool kit for core robotic functionalities by harnessing deep learning to provide advanced perception and cognition capabilities, meeting in this way the general requirements of robotics applications in the applications areas of Healthcare, Agri-Food and Agile Production. The term toolkit in OpenDR refers to a set of deep learning software functions, packages and utilities used to help roboticists to develop and test a robotic application that incorporates deep learning. OpenDR will provide the means to link the robotics applications to software libraries (deep learning frameworks, e.g. tensorflow) and to link it with the operating environment (ROS). OpenDR focuses on the AI and Cognition core technology in order to provide tools that make robotic systems cognitive, giving them the ability to a) interact with people and environments by developing deep learning methods for human centric and environment active perception and cognition, b) learn and categorise by developing deep learning tools for training and inference in common robotics settings, and c) make decisions and derive knowledge by developing deep learning tools for cognitive robot action and decision making. As a result, the developed OpenDR toolkit will also enable cooperative human-robot interaction as well as the development of cognitive mechatronics where sensing and actuation are closely coupled with cognitive systems thus contributing to another two core technologies beyond AI and Cognition. OpenDR will develop, train, deploy and evaluate deep learning models that improve the technical capabilities of the core technologies beyond the current state of the art. It will enable a greater range of robotics applications that can be demonstrated at TRL 3 and above, thus lowering the technical barriers within the prioritised application areas.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

RIA - Research and Innovation action

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-ICT-2018-20

Voir tous les projets financés au titre de cet appel

Coordinateur

ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 173 750,00
Adresse
KEDEA BUILDING, TRITIS SEPTEMVRIOU, ARISTOTLE UNIVERSITY CAMPUS
546 36 THESSALONIKI
Grèce

Voir sur la carte

Région
Βόρεια Ελλάδα Κεντρική Μακεδονία Θεσσαλονίκη
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 173 750,00

Participants (7)

Mon livret 0 0