Project description
Investigating the emergence of biosynthetic pathways
Metabolism is an interwoven network of chemical processes finely orchestrated by the catalytic function of enzymes. Accumulating evidence indicates that most metabolic chemical reactions can be catalysed by minerals and metals without the participation of enzymes. How did these chemical reactions branch out to become the biosynthetic pathways we know today? To answer this question, scientists of the EU-funded NonEnzymatic project will chemically recreate in the lab the anabolic synthesis of sugars – a process known as gluconeogenesis – and fats. The aim is to investigate the catalytic effect of particular mineral surfaces and decipher the emergence of life’s anabolic pathways.
Objective
All of life’s molecules, including genetic polymers, are built up and broken down by interwoven chemical processes collectively known as metabolism. But how did life’s chemical pathways emerge before there were genetically encoded enzymes to act as catalysts? Why does biochemistry use the reactions and pathways that it does and not others? One compelling answer to these questions is that precursors to core metabolic pathways emerged as the result of spontaneous chemical processes. Indeed, recent work from the supervisor’s lab and others has shown that much of life’s core metabolic chemistry, such as the Krebs cycle, can occur without enzymes, catalyzed by minerals and metals, to produce biochemistry’s universal building blocks. But how did these networks of pre-enzymatic chemical reactions branch out to become the biosynthetic pathways we know today? This project aims to understand the emergence of life’s anabolic pathways for the synthesis of sugars (gluconeogenesis) and fats (the fatty acid cycle), by chemically recreating them in the lab. To achieve these goals, special attention is paid to the pre-organizing and catalytic effect of mineral surfaces. The researcher will bring existing skills in homogeneous catalysis and organic chemistry, and gain new skills in analytical chemistry, heterogeneous catalysis and the chemistry of complex systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences analytical chemistry
- natural sciences chemical sciences organic chemistry
- natural sciences biological sciences biochemistry biomolecules lipids
- natural sciences chemical sciences catalysis
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67081 STRASBOURG
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.