Project description
Implementing brain-inspired computing in the reciprocal space of a single magnetic element
Artificial neural networks are computing systems inspired by biological neural networks. They emulate the brain by using nonlinear elements that act as neurons interconnected through artificial synapses. Current architectures are facing challenges: the number of synapses implemented is very limited compared with the tens of thousands in the human brain. Furthermore, changing the weight of each connection requires additional memory elements. The EU-funded k-NET project will circumvent these issues. It proposes new architecture based on the idea that dynamical hyperconnectivity can be implemented not in real space but in reciprocal or k-space. To demonstrate this novel approach, researchers will select ferromagnetic nanostructures in which the populations of spin waves – the elementary excitations – play the role of neurons.
Objective
Artificial neural networks represent a key component of neuro-inspired computing for non-Boolean computational tasks. They emulate the brain by using nonlinear elements acting as neurons that are interconnected through artificial synapses. However, such physical implementations face two major challenges. First, interconnectivity is often constrained because of limits in lithography techniques and circuit architecture design; connections are limited to 100s, compared with 10000s in the human brain. Second, changing the weight of these individual interconnects dynamically requires additional memory elements attached to these links.
Here, we propose an innovative architecture to circumvent these issues. It is based on the idea that dynamical hyperconnectivity can be implemented not in real space but in reciprocal or k-space. To demonstrate this novel approach we have selected ferromagnetic nanostructures in which populations of spin waves – the elementary excitations – play the role of neurons. The key feature of magnetization dynamics is its strong nonlinearity, which, when coupled with external stimuli like applied fields and currents, translates into two useful features: (i) nonlinear interactions through exchange and dipole-dipole interactions couple potentially all spin wave modes together, thereby creating high connectivity; (ii) the strength of the coupling depends on the population of each k mode, thereby allowing for synaptic weights to be modified dynamically. The breakthrough concept here is that real-space interconnections are not necessary to achieve hyper-connectivity or reconfigurable synaptic weights.
The final goal is to provide a proof-of-concept of a k-space neural network based on interacting spin waves in low-loss materials such as yttrium iron garnet (YIG). The relevant spin wave eigenmodes are in the GHz range and can be accessed by microwave fields and spin-orbit torques to achieve k-space Neural computation with magnEtic exciTations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.