Project description
Silicon-based nanomaterials enhancing optical properties
Silicon has exceptional optical properties thanks to its high refractive index. Currently, it is not possible to control the physical characteristics of silicon nano-objects. A major current challenge is therefore to create synthetic routes to silicon particles having controlled shape and dimensions. The aim of the EU-funded SCATTER project is to revolutionise silicon synthesis, producing nano-objects that are currently inaccessible, and achieving silicon-based materials with fantastic optical properties. Four strategies, guided by optical models, will be pursued to modulate light propagation by silicon objects: controlled porosity, synthesis of anisotropic objects, fabrication of clusters of 13 kissing spheres, and the assembly of spheres of differing diameter. The silicon nano-objects will be self-assembled into diverse materials and their optical properties assessed using advanced characterisation techniques.
Objective
Controlling the crystallinity, form, dimensions and porosity of nano-objects produces remarkable and unique physical properties. Silica (SiO2) is among the most studied nanomaterial, where its morphology can be controlled precisely. The reduced form, silicon (Si), has exceptional properties of interest to batteries, semi-conductors, electronics and optics. If it were possible to control the physical characteristics of silicon nano-objects, a host of applications would become possible in new domains of optics. Hence a major current challenge is the creation of synthetic routes to Mie-resonant silicon particles and their assembly into metamaterials.
The aim of Scatter is to revolutionize silicon synthesis, producing nano-objects that are currently inaccessible, and achieving silicon-based materials with fantastic light manipulation. To obtain an efficient metamaterial with a broad response, the intensity and frequency of dipole resonances should overlap. Creating materials with electric and magnetic resonances at the same frequency requires the development of novel synthesis techniques for silicon nano-objects.
Four strategies, guided by optical models, will be pursued to coalesce the electric and magnetic resonance in silicon objects: controlled porosity in spheres, synthesis of anisotropic objects, fabrication of clusters of 13 kissing spheres, and the assembly of spheres with two differing diameters. The silicon nano-objects will be self-assembled into diverse materials and their optical properties assessed using advanced optical measurements.
Properties that may result from the realization of silicon-based materials include zero and negative refractive index, total light transmission or total absorption, and low-loss light confinement below the diffraction limit. Mastering the fabrication of silicon building blocks will enable many new systems, including real examples of metamaterials in the form of planar lenses, monoliths, fibers, inks, films and surfaces.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nano-materials
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.