Descripción del proyecto
Nanomateriales de silicio que mejoran las propiedades ópticas
El silicio posee unas propiedades ópticas excepcionales gracias a su alto índice de refracción. Hoy día no se pueden controlar las características físicas de los nanoobjetos de silicio. Por lo tanto, uno de los principales retos actuales es crear rutas sintéticas para desarrollar partículas de silicio con formas y tamaños controlados. El objetivo del proyecto financiado con fondos europeos SCATTER es revolucionar la síntesis de silicio mediante la fabricación de nanoobjetos actualmente inalcanzables y desarrollar materiales de silicio con propiedades ópticas extraordinarias. Para ello, se emplearán cuatro metodologías, guiadas por modelos ópticos, para modular la propagación de la luz por objetos de silicio, a saber: la porosidad controlada, la síntesis de objetos anisotrópicos, la fabricación de grupos de trece esferas de radio uno y el ensamblaje de esferas de diferente diámetro. Los nanoobjetos de silicio se autoensamblarán en materiales diversos y sus propiedades ópticas se evaluarán mediante técnicas de caracterización avanzadas.
Objetivo
Controlling the crystallinity, form, dimensions and porosity of nano-objects produces remarkable and unique physical properties. Silica (SiO2) is among the most studied nanomaterial, where its morphology can be controlled precisely. The reduced form, silicon (Si), has exceptional properties of interest to batteries, semi-conductors, electronics and optics. If it were possible to control the physical characteristics of silicon nano-objects, a host of applications would become possible in new domains of optics. Hence a major current challenge is the creation of synthetic routes to Mie-resonant silicon particles and their assembly into metamaterials.
The aim of Scatter is to revolutionize silicon synthesis, producing nano-objects that are currently inaccessible, and achieving silicon-based materials with fantastic light manipulation. To obtain an efficient metamaterial with a broad response, the intensity and frequency of dipole resonances should overlap. Creating materials with electric and magnetic resonances at the same frequency requires the development of novel synthesis techniques for silicon nano-objects.
Four strategies, guided by optical models, will be pursued to coalesce the electric and magnetic resonance in silicon objects: controlled porosity in spheres, synthesis of anisotropic objects, fabrication of clusters of 13 kissing spheres, and the assembly of spheres with two differing diameters. The silicon nano-objects will be self-assembled into diverse materials and their optical properties assessed using advanced optical measurements.
Properties that may result from the realization of silicon-based materials include zero and negative refractive index, total light transmission or total absorption, and low-loss light confinement below the diffraction limit. Mastering the fabrication of silicon building blocks will enable many new systems, including real examples of metamaterials in the form of planar lenses, monoliths, fibers, inks, films and surfaces.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ingeniería y tecnologíaingeniería de materialesfibras
- ciencias naturalesciencias físicaselectromagnetismo y electrónicadispositivo semiconductor
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
75794 Paris
Francia