Project description
Stop oscillating and fall in line with technologies for more efficient and stable power grids
Global climate change is critically related to human activity and the energy that powers it. Enhancing energy efficiency and sustainability is thus a key pillar of most policy initiatives. Currently, most power grids rely on alternating current (AC) because generators, motors and transformers use the induction principle. With increasing contributions from internal direct current (DC) based renewable energy sources, electromobility and battery storages, low-voltage DC grids or DC coupled with AC in a hybrid network could enable more stable, efficient and sustainable electricity distribution at lower costs. The EU-funded HYPERRIDE project is developing the technologies to make this possible with planned demonstrations in a variety of use cases. All this will be accompanied by business models for the resulting products, services and applications.
Objective
The project HYPERRIDE (HYbrid Provision of Energy based on Reliabilty and Resiliancy via Integration of Dc Equipment) contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids.DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE.Consequently HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.
Fields of science
- natural sciencescomputer and information sciencesdatabases
- social sciencessociologyindustrial relationsautomation
- social scienceseconomics and businessbusiness and managementbusiness models
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencescomputer and information sciencescomputer security
Programme(s)
Funding Scheme
IA - Innovation actionCoordinator
1210 Wien
Austria