Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Image-based High-resolution In-silico Modeling of Total Cardiac Function

Article Category

Article available in the following languages:

Des modèles de fonction cardiaque totale pour des traitements plus efficaces

Les modèles de cœur permettent de mieux comprendre la fonction cardiaque, aussi bien dans des conditions de bonne santé que de maladie, ce qui permet d’établir de meilleures stratégies thérapeutiques. InsiliCardio a mis au point des modèles cardiaques électro‑mécano‑fluidiques avancés pour améliorer l’évaluation et le traitement des patients.

Les technologies d’imagerie par tomographie actuelles fournissent une mine de renseignements sur l’anatomie, la structure et la fonction cardiaques à une résolution très élevée, voire parfois paracellulaire(s’ouvre dans une nouvelle fenêtre). Pourtant, les techniques de personnalisation ou de numérisation permettant d’exploiter pleinement ces riches ensembles de données et de représenter avec précision l’anatomie et la physiologie des patients n’en sont encore qu’à leurs débuts. Le soutien du programme Marie Skłodowska‑Curie a permis au chargé de recherche du projet InsiliCardio de mener à terme une étude de faisabilité sur la simulation d’une fonction cardiaque totale personnalisée. Cette fonction a été représentée dans des modèles à haute résolution détaillés d’un point de vue anatomique incluant les trois domaines physiques principaux (fluide, structure et électrique). Le processus de modélisation a démontré que l’on s’approche de plus en plus de la réalisation de modèles de cœur électro‑mécano‑fluidiques. Bien que leur construction reste onéreuse, ces modèles se révèlent prometteurs en tant qu’outils de prédiction de la réaction à une intervention médicale.

Simuler une fonction cardiaque électro‑mécano‑fluidique totale

InsiliCardio a combiné les contributions de nombreuses disciplines, dont notamment la cardiologie (arythmies cardiaques, insuffisance cardiaque et thérapies), l’ingénierie biomédicale (construction de modèles, analyse d’images médicales et techniques de cartographie) et les mathématiques (méthodes numériques et calcul scientifique). Cette approche pluridisciplinaire a permis de mener plusieurs qui ont démontré l’applicabilité des modèles de calcul pour les cas pertinents sur le plan clinique. Par exemple, les tensions pariétales du ventricule gauche et la force biomécanique constituent des biomarqueurs potentiels pour le diagnostic et la prédiction des résultats post-traitement. Elles ne sont cependant pas accessibles dans le cadre de procédures cliniques de routine ou par imagerie médicale. La modélisation effectuée par InsiliCardio a permis de mieux évaluer ces biomarqueurs prometteurs sur le plan clinique. Un autre axe de travail a permis de créer des modèles mécaniques atriaux (cavités cardiaques supérieures) et de constater que des mesures personnalisées de l’épaisseur des parois sont nécessaires pour calculer avec précision la tension pariétale locale. Des pics de la tension pariétale atriale sont associés à la remodélisation tissulaire provoquant une fibrose(s’ouvre dans une nouvelle fenêtre), considérée comme un facteur de risque majeur pour le développement de la fibrillation atriale. L’équipe a établi un cadre de simulation pour étudier ce lien entre l’anatomie, la mécanique et l’électrophysiologie locales. «À court terme, nos modèles pourraient améliorer la sélection des patients, la planification thérapeutique et la gestion du risque, il en découlera des avantages cliniques», indique le chercheur Christoph Augustin. «Plus spécifiquement, les modèles capables de simuler des biomarqueurs ne pouvant être obtenus à partir de l’imagerie ou de mesures cliniques peuvent aider à la prise de décision dans les cas complexes et problématiques.»

Vers une meilleure planification thérapeutique

Les modèles informatiques de cœur auront un impact sur la vie des citoyens européens, à la fois comme outils industriels de développement de dispositifs médicaux(s’ouvre dans une nouvelle fenêtre) (MDDT) pour la conception et l’optimisation de dispositifs cardiaques, et comme logiciel en tant dispositif médical(s’ouvre dans une nouvelle fenêtre) (SaMD) pour des applications cliniques diagnostiques et thérapeutiques. Le travail effectué dans le cadre du projet InsiliCardio pourrait s’avérer bénéfique pour la conception et l’optimisation de dispositifs cardiaques, de valvules cardiaques mécaniques ou d’endoprothèses. Une version libre du logiciel appelée openCARP(s’ouvre dans une nouvelle fenêtre) sera disponible gratuitement à des fins universitaires. Elle intègre actuellement le simulateur d’électrophysiologie, et des modules pour la mécanique et la dynamique des fluides devraient y être bientôt ajoutés. Poursuivant ses travaux, M. Augustin utilisera les données et les modèles d’InsiliCardio dans le cadre du projet SICVALVES(s’ouvre dans une nouvelle fenêtre), en les étendant pour mettre au point des modèles de croissance et de remodélisation(s’ouvre dans une nouvelle fenêtre) afin d’approfondir l’étude de l’hypertrophie inadéquate(s’ouvre dans une nouvelle fenêtre) (l’épaississement pathologique de la paroi ventriculaire). Il s’agit d’un facteur de risque majeur d’insuffisance cardiaque. L’objectif de l’équipe est d’aider les cliniciens à planifier les thérapies avec plus d’efficacité. «À l’avenir, nous nous attendons à ce que les modèles informatiques soient employés pour évaluer l’état de la progression de la maladie et pour fournir des prévisions à plus long terme des résultats thérapeutiques», indique M. Augustin.

Découvrir d’autres articles du même domaine d’application

Mon livret 0 0