Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

AMPLE: Aspect-Oriented, Model-Driven, Product Line Engineering

Objective

The aim of this project is to provide a Software Product Line (SPL) development methodology that offers improved modularisation of variations, their holistic treatment across the software lifecycle and maintenance of their (forward and backward) traceability during SPL evolution. Currently, there is a big gap between research in requirements analysis, architectural modelling and implementation technology, and the industrial practice in SPL engineering. Furthermore, the focus tends to be on the design and code level when variations need to be identified, managed and analysed from the very early stage of requirements engineering. Architecture models are related to requirements models in an ad-hoc fashion and implementation tends to rely on pre-processors which are inadequate substitute for proper programming language support for variability. Nor is there any systematic traceability framework for relating variations across a SPL engineering lifecycle.

Aspect-Oriented Software Development (AOSD) can improve the way in which software is modularised, localising its variability in independent aspects as well as improving the definition of complex configuration logic to customise SPLs. Model-Driven Development (MDD) can help to express concerns as a set of models without technical details and support traceability of the high-level requirements and variations through model transformations.

AMPLE will combine AOSD and MDD techniques to not only address variability at each stage in the SPL engineering lifecycle but also manage variations in associated artefacts such as requirements documents. Furthermore, it aims to bind the variation points in various development stages and dimensions into a coherent variability framework across the life cycle thus providing effective forward and backward traceability of variations and their impact. This makes it possible to develop resilient yet adaptable SPL architectures for exploitation in industrial SPL engineering processes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

LANCASTER UNIVERSITY
EU contribution
No data
Address
BAILRIGG
LANCASTER
United Kingdom

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (9)

My booklet 0 0