Project description
Go to sleep, to remember!
According to the findings of recent research, sleep after learning promotes successful memory consolidation, resulting in heightened memory recall. Yet, little is known about the neurophysiological mechanisms through which the sleeping brain consolidates new memories. The ERC-funded SPIN project will aim to fill this knowledge gap. It will test whether memory consolidation is driven by particular electrophysiological signatures of sleep – sleep spindles deployed to cortical learning sites where they are thought to induce lasting structural changes. The project will study direct intracranial recordings from the human hippocampus and will use high-density scalp EEG as well as functional and structural MRI. The findings will reveal the mechanistic link between learning, sleep and structural brain changes.
Objective
Our ability to remember past events and experiences lies at the core of cognition and behaviour. But how do fleeting moments get converted into durable memory traces? Recent work has highlighted the pivotal role of post-learning sleep for successful memory consolidation, the process of stabilising new memories over time. However, little is known about the neurophysiological mechanisms through which the sleeping brain consolidates new memories. Not only has this left a gap in our understanding of memory formation as a whole, but also the means to modulate memories during sleep have remained underexplored. SPIN will test the exciting hypothesis that particular electrophysiological signatures of sleep, namely sleep spindles, are the mechanistic vehicle driving memory consolidation. Specifically, I hypothesise that in coordination with hippocampal reactivation events, sleep spindles are deployed to cortical learning sites where they induce lasting structural changes. Using intracranial recordings from the human hippocampus (measuring single neuron firing and associated ‘ripple’ oscillations) and from an array of cortical areas, we will first establish whether spindles are temporally aligned with hippocampal reactivation events. Next, we will use high-density scalp EEG and functional as well as structural MRI in healthy participants to test whether spindle deployment to cortical learning sites predicts structural changes in these regions. To assert causality, we will examine the effects of invasive spindle perturbation in patients on memory consolidation. Finally, we will experimentally enhance local spindles to harness their potential as a tool for boosting human memory. In sum, SPIN will use an unprecedented array of human brain recording and stimulation techniques to provide a mechanistic link between learning, sleep and structural brain changes, culminating in novel tools to enhance human learning and memory.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.