Skip to main content

The Electrolytic Revolution: Harnessing Coulomb Physics and Soft Matter Chemistry to Design Electrolyte Materials

Objective

Electrolytes fill our natural environment and are crucial to many areas of modern technology. Animals and plants are made up of electrolyte and our oceans are enormous reservoirs of electrolyte covering 2/3 of the surface of the Earth. Energy storage and conversion technologies, such as batteries and fuel cells, incorporate electrolyte as a central and essential ingredient. Despite this enormous ubiquity and importance of electrolytes, these fluids are often relegated to the ‘background’, considered simply as a solvating environment or conduits for charge transfer, sufficiently well defined by a few general parameters. Recently, a new perspective has begun to emerge: of electrolytes as a complex, central player: A vast library of different chemistries are being discovered including molecular ions, eutectic mixtures, self-assembling liquid salts, and oligomeric solvents. This diversity brings an unexplored jungle of nano-architectures and dynamic heterogeneities, relevant across many orders of magnitude in time and space.
The overall vision of the ELECTROLYTE project is to explore and understand molecular interactions in complex and high-concentration electrolytes. The philosophy and methodology of the project involves drawing on theories and predictions from far-separated disciplines of Coulomb physics, ionic liquid chemistry, soft matter, and the biology of halophiles and electric fish. From these foundations, a series of hypotheses will be tested through experimental investigations of the structure, dynamics, electrochemical, mechanical and confinement properties of a wide range of electrolytic materials. This will lead to deep insight into the properties of concentrated electrolytes, and demonstrations of radically new electrolytic materials with properties outside of what is currently possible. Ultimately, the project will bring new mindsets for understanding and innovating electrolyte materials for future technologies.

Call for proposal

ERC-2020-COG
See other projects for this call

Funding Scheme

ERC-COG - Consolidator Grant

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Address
Wellington Square University Offices
OX1 2JD Oxford
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 996 357

Beneficiaries (1)

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
United Kingdom
EU contribution
€ 1 996 357
Address
Wellington Square University Offices
OX1 2JD Oxford
Activity type
Higher or Secondary Education Establishments