Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Metabolic Mechanical Materials: Adaptation, Learning & Interactivity

Project description

Novel interactive mechano-chemical material systems with 'erasable' memory

The cell is often likened to a small yet highly complex factory, breaking down and building up molecules via complex mechanical and chemical processes. Harnessing these cellular processes, the EU-funded M3ALI project will leverage mechanically stimulated polymer materials to control chemical reactions from the simplest up to the level of chemical reaction networks. A novel mechano-chemo-mechano signal processing language will support a feedback loop in which mechanical deformation is converted into chemical signals, and the chemical information is fed back to the mechanical material. It will enable more natural adaptive and interactive soft robotics and interactive cell/material systems capable of co-evolution.

Objective

The central objective of M3ALI is to introduce concepts for adaptation, simplistic learning by training (physical exercise, not teaching), and interactivity in mechanically stimulated polymer materials by developing metabolic modules for mechanical memories (that can also be forgotten), for down-stream chemical processes and for active communication. The key experimental methodology is based on two classes of molecularly engineered mechanoprobes (MPs) that are capable of defined downstream reactivity up to the level of chemical reaction networks (CRNs). We build on our recent concept of DNA-based mechanofluorescent folding motifs in hydrogels, and extend it to cyclic disulfide MPs, and embed them into hydrogels and elastomers of controlled topology. DNA-based MPs will engage in DNA-based downstream reactions, while disulfide MPs will engage in complementary radical chemistry. The key concept is to code mechanical deformation into chemical signals that can be processed ultimately in CRNs to enable a behavioral evolution of the materials systems by installing memories, as well as by signal amplification, processing, translation and transport, and where the processed chemical information is fed back into the material to develop a full mechano-chemo-mechano signal processing language. We will break new ground in proof-of-concept applications in mechanical training and forgetting (physical exercise similar to muscle training), adaptive and interactive soft robotics, adaptive mechanical metamaterials, as well as interactive mechanical synchronization and interactive cell/material systems. Our approach to metabolic mechanical materials that use systems chemistry concepts to empower mechanical materials with the capacity to adapt, learn and interact profoundly contrast present research on responsive materials. In long term such concepts will provide the basis for more life-like materials systems capable of true adaptivity, interactivity and co-evolution in open systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 750,00
Address
SAARSTRASSE 21
55122 MAINZ
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 750,00

Beneficiaries (1)

My booklet 0 0