Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Metabolic Mechanical Materials: Adaptation, Learning & Interactivity

Projektbeschreibung

Neue interaktive mechanisch-chemische Materialsysteme mit „löschbarem“ Gedächtnis

Zellen werden oft mit kleinen und doch äußerst komplexen Fabriken in Verbindung gebracht, die Moleküle über komplexe mechanische und chemische Prozesse aufspalten und aufbauen. Anhand dieser zellulären Prozesse wird das EU-finanzierte Projekt M3ALI mechanisch stimulierte Polymermaterialien nutzen, um einfache chemische Reaktionen bis hin zu chemischen Reaktionsnetzwerken zu steuern. Eine neuartige mechanisch-chemisch-mechanische Signalverarbeitungssprache wird Rückkopplungsschleifen unterstützen, bei denen eine mechanische Verformung in chemische Signale umgewandelt wird und die chemischen Informationen an das mechanische Material zurückgegeben werden. Dadurch sollen eine natürlichere adaptive und interaktive weiche Robotik sowie interaktive Zell-/Materialsysteme möglich werden, die zur Koevolution fähig sind.

Ziel

The central objective of M3ALI is to introduce concepts for adaptation, simplistic learning by training (physical exercise, not teaching), and interactivity in mechanically stimulated polymer materials by developing metabolic modules for mechanical memories (that can also be forgotten), for down-stream chemical processes and for active communication. The key experimental methodology is based on two classes of molecularly engineered mechanoprobes (MPs) that are capable of defined downstream reactivity up to the level of chemical reaction networks (CRNs). We build on our recent concept of DNA-based mechanofluorescent folding motifs in hydrogels, and extend it to cyclic disulfide MPs, and embed them into hydrogels and elastomers of controlled topology. DNA-based MPs will engage in DNA-based downstream reactions, while disulfide MPs will engage in complementary radical chemistry. The key concept is to code mechanical deformation into chemical signals that can be processed ultimately in CRNs to enable a behavioral evolution of the materials systems by installing memories, as well as by signal amplification, processing, translation and transport, and where the processed chemical information is fed back into the material to develop a full mechano-chemo-mechano signal processing language. We will break new ground in proof-of-concept applications in mechanical training and forgetting (physical exercise similar to muscle training), adaptive and interactive soft robotics, adaptive mechanical metamaterials, as well as interactive mechanical synchronization and interactive cell/material systems. Our approach to metabolic mechanical materials that use systems chemistry concepts to empower mechanical materials with the capacity to adapt, learn and interact profoundly contrast present research on responsive materials. In long term such concepts will provide the basis for more life-like materials systems capable of true adaptivity, interactivity and co-evolution in open systems.

Gastgebende Einrichtung

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Netto-EU-Beitrag
€ 1 998 750,00
Adresse
SAARSTRASSE 21
55122 Mainz
Deutschland

Auf der Karte ansehen

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 998 750,00

Begünstigte (1)