Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Metabolic Mechanical Materials: Adaptation, Learning & Interactivity

Descrizione del progetto

Nuovi sistemi di materiali meccano-chimici interattivi con memoria «cancellabile»

La cellula è spesso paragonata a una fabbrica piccola ma altamente complessa, che scompone e costruisce molecole attraverso complessi processi meccanici e chimici. Sfruttando questi processi cellulari, il progetto M3ALI, finanziato dall’UE, farà leva su materiali polimerici stimolati meccanicamente per controllare le reazioni chimiche dalle più semplici fino al livello delle reti di reazioni chimiche. Un nuovo linguaggio di elaborazione del segnale meccano-chimico-meccanico supporterà un circuito di controreazione in cui la deformazione meccanica è convertita in segnali chimici e le informazioni chimiche sono ritrasmesse al materiale meccanico permettendo una robotica morbida adattiva e interattiva più naturale e sistemi interattivi cellula/materiale capaci di co-evoluzione.

Obiettivo

The central objective of M3ALI is to introduce concepts for adaptation, simplistic learning by training (physical exercise, not teaching), and interactivity in mechanically stimulated polymer materials by developing metabolic modules for mechanical memories (that can also be forgotten), for down-stream chemical processes and for active communication. The key experimental methodology is based on two classes of molecularly engineered mechanoprobes (MPs) that are capable of defined downstream reactivity up to the level of chemical reaction networks (CRNs). We build on our recent concept of DNA-based mechanofluorescent folding motifs in hydrogels, and extend it to cyclic disulfide MPs, and embed them into hydrogels and elastomers of controlled topology. DNA-based MPs will engage in DNA-based downstream reactions, while disulfide MPs will engage in complementary radical chemistry. The key concept is to code mechanical deformation into chemical signals that can be processed ultimately in CRNs to enable a behavioral evolution of the materials systems by installing memories, as well as by signal amplification, processing, translation and transport, and where the processed chemical information is fed back into the material to develop a full mechano-chemo-mechano signal processing language. We will break new ground in proof-of-concept applications in mechanical training and forgetting (physical exercise similar to muscle training), adaptive and interactive soft robotics, adaptive mechanical metamaterials, as well as interactive mechanical synchronization and interactive cell/material systems. Our approach to metabolic mechanical materials that use systems chemistry concepts to empower mechanical materials with the capacity to adapt, learn and interact profoundly contrast present research on responsive materials. In long term such concepts will provide the basis for more life-like materials systems capable of true adaptivity, interactivity and co-evolution in open systems.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Contribution nette de l'UE
€ 1 998 750,00
Indirizzo
SAARSTRASSE 21
55122 Mainz
Germania

Mostra sulla mappa

Regione
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 998 750,00

Beneficiari (1)