Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Sharp Isoperimetric Inequalities - Old and New

Project description

Circling back on one of the oldest topics in geometry

Isoperimetric problems date back to the story of the founding of Carthage by Queen Dido, who sought to enclose an area of land big enough to build a whole city with a single ox hide. Given a space, the isoperimetric problem seeks to characterise the shapes of prescribed volume whose surface area is minimal. For example, it was already known to the ancient Greeks that among all sets in the plane enclosing a given area, the circle has minimal perimeter. The problem is well understood on two-dimensional surfaces, but becomes far more complex and challenging in three-dimensions and higher. The EU-funded ISOPERIMETRY project plans to address these challenges in several natural and important settings using innovative new tools.

Objective

Isoperimetric inequalities constitute some of the most beautiful and ancient results in geometry, and play a key role in numerous facets of differential geometry, analysis, calculus of variations, geometric measure theory, minimal surfaces, probability and more.

Isoperimetric minimizers have classically been determined on Euclidean, spherical, hyperbolic and Gaussian spaces. The isoperimetric problem is well-understood on surfaces, but besides some minor variations on these examples and some three-dimensional cases, remains open on numerous fundamental spaces, like projective spaces, the flat torus or hypercube, and for symmetric sets in Gaussian space. When partitioning the space into multiple regions of prescribed volume so that the common surface-area is minimized, the Euclidean double-bubble conjecture was established by Hutchings-Morgan-Ritoré-Ros, and the Gaussian multi-bubble conjecture was recently established in our work with Neeman, but the Euclidean and spherical multi-bubble conjectures remain wide open. Isoperimetric comparison theorems like the Gromov-Lévy and Bakry-Ledoux theorems are well-understood under a Ricci curvature lower bound, but under an upper-bound K ≤ 0 on the sectional curvature, the Cartan-Hadamard conjecture remains open in dimension five and higher despite recent progress. In the sub-Riemannian setting, the isoperimetric problem remains open on the simplest example of the Heisenberg group.

The above long-standing problems lie at the very forefront of the theory and present some of the biggest challenges on both conceptual and technical levels. Any progress made would be extremely important and would open the door for tackling even more general isoperimetric problems. To address these questions, we propose adding several concrete new tools, some of which have only recently become available, to the traditional ones typically used in the study of isoperimetric problems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 745 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 745 000,00

Beneficiaries (1)

My booklet 0 0