Description du projet
Jouer avec des briques LEGO pour la conception de métamatériaux
Les métamatériaux sont des matériaux artificiels conçus autour de motifs ou de structures uniques qui les font interagir avec la lumière et le son de manières différentes des matériaux naturels. L’absence de modèle permettant de prédire la réponse statique et dynamique des métamatériaux de taille finie limite la possibilité d’explorer des briques combinant métamatériaux et matériaux classiques de taille finie. Le projet META-LEGO, financé par l’UE, va créer un modèle micromorphique réduit qui devrait permettre de révéler la réponse statique et dynamique de briques de métamatériaux de taille et de forme arbitraires. La disposition adéquate de ces briques «LEGO» pourrait permettre aux chercheurs de concevoir des méta-structures surprenantes, telles que des gares ferroviaires contrôlées par le bruit et les vibrations ou des méta-villes entièrement protégées des ondes sismiques.
Objectif
META-LEGO will bring the knowledge needed to design metamaterials/classical-materials structures that control elastic waves and recover energy. For this, I will develop, implement and validate a new paradigm for finite-size metamaterials’ modeling, by leveraging the relaxed-micromorphic model that I have contributed to pioneer.
The presence of boundaries in metamaterials strongly affects their response when coming in contact with mechanical loads. Yet, we still lack an exhaustive model to predict the static/dynamic response of finite-size metamaterials: current homogenization methods are unsuitable to provide a coherent transition from infinite- to finite-size metamaterials modeling. This prevents us from exploring realistic structures combining metamaterials’ and classical-materials’ bricks of finite size.
META-LEGO hypothesizes that the mechanical response of finite-size metamaterials can be explored going beyond classical homogenization. Instead, I will create an elastic- and inertia-augmented micromorphic model with embedded internal lengths to describe the main metamaterials’ fingerprint characteristics, such as anisotropy, dispersion, band-gaps, size-effects, etc.
To provide this paradigm shift, I will focus on 4 objectives:
1. Model metamaterials’ response under static/dynamic loads
2. Implement the model on infinite-size metamaterials
3. Validate the model on finite-size metamaterials
4. Design and manufacture metamaterials/classical-materials structures able to control elastic waves and recover energy
The reduced model’s structure (free of unnecessary parameters), coupled with well-posed boundary conditions, will allow us to unveil the static/dynamic response of both real and not-yet-existing metamaterials’ bricks of arbitrary size and shape. Playing LEGO with such bricks, we will be able to design and optimize surprising meta-structures, such as noise- and vibration-controlled railway stations, or meta-cities entirely protected from seismic waves.
Champ scientifique
Mots‑clés
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
44227 Dortmund
Allemagne