Project description
Novel class of polymeric protein-based cryoprotectants
Efficient, non-toxic cryoprotectants are essential for the long-term storage of viable cells and tissues as therapeutic agents in regenerative medicine. The biopolymers known as ice-binding proteins (IBPs) are able to prevent freeze injury by keeping the nucleation and growth of ice crystals in check. The EU-funded PROTECT project aims to develop modular IBPs to perform the quantitative physicochemical experiments needed to understand what governs the activity of IBPs as inhibitors of freeze injury at the single-molecule level, and to optimise cryopreservation. The goal is to synthesise a novel class of ice-binding protein polymers and, using super-resolution microscopy, evaluate their impact on heart cell and tissue cryopreservation.
Objective
Efficient, non-toxic cryoprotectants, that allow long-term storage of viable therapeutic cells and tissues, are the tool that regenerative medicine requires for its successful realization into a viable therapeutic option. A remarkable class of biopolymers known as ice-binding proteins (IBPs) alleviate the risk of freeze injury throughout the Kingdoms of Life by keeping the nucleation and growth of ice crystals in check. Yet, the application potential of IBP analogues (IBPAs) as cryoprotectants has remained underexploited. This is because we are yet to unravel and utilize the structure-function relations, which govern the activity of IBPAs as inhibitors of ice recrystallization and promoters of ice nucleation at the single-molecule level in vitro and within a complex biological environment.
I propose to develop uniquely modular IBPAs to perform the quantitative single-molecule and physico-chemical experiments essential to bridge this knowledge gap and to engineer ice-binders optimized for cryopreservation. Our first aim is the biosynthesis of a novel class of ice-binding protein-polymers (iPP) with systematic variations in composition and size. Ice nucleators with a broad range of sizes will be created from iPPs of variable chain length by dissolution, self-assembly and surface-tethering to nanoparticles of variable dimensions. Super-resolution microscopy experiments of iPP ice-binding will deliver high-resolution maps of spatiotemporal distribution and dynamics. These will be related to iPP structure, physico-chemical properties, ice recrystallization inhibition (IRI) and ice nucleation (IN) activity. These insights will translate into the next generation of bioactive iPPs tailored to maximize both IRI and IN. Their impact on heart cell and tissue cryopreservation will be examined to advance our fundamental understanding of freeze injury and dramatically improve post-thaw recovery as well as structural and functional integrity without adverse effects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.