European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Modulating ice nucleation and growth with bio-inspired protein-polymers for cryopreservation

Descripción del proyecto

Una nueva clase de crioprotectores basados en proteínas poliméricas

Los crioprotectores eficaces sin toxicidad son esenciales para el almacenamiento a largo plazo de células y tejidos viables como agentes terapéuticos en la medicina regenerativa. Los biopolímeros conocidos como proteínas que se unen al hielo son capaces de impedir daños por congelación al mantener bajo control la nucleación y el crecimiento de los cristales de hielo. El proyecto PROTECT, financiado con fondos europeos, tiene como objetivo desarrollar proteínas modulares que se unen al hielo para llevar a cabo los experimentos fisicoquímicos cuantitativos necesarios a fin de comprender qué condiciona la actividad de estas proteínas como inhibidoras de los daños por congelación a nivel de una sola molécula, y optimizar así la crioconservación. El objetivo es sintetizar una nueva clase de polímeros proteínicos que se unan al hielo y, mediante microscopía de superresolución, evaluar su efecto en la crioconservación de células y tejidos cardíacos.

Objetivo

Efficient, non-toxic cryoprotectants, that allow long-term storage of viable therapeutic cells and tissues, are the tool that regenerative medicine requires for its successful realization into a viable therapeutic option. A remarkable class of biopolymers known as ice-binding proteins (IBPs) alleviate the risk of freeze injury throughout the Kingdoms of Life by keeping the nucleation and growth of ice crystals in check. Yet, the application potential of IBP analogues (IBPAs) as cryoprotectants has remained underexploited. This is because we are yet to unravel and utilize the structure-function relations, which govern the activity of IBPAs as inhibitors of ice recrystallization and promoters of ice nucleation at the single-molecule level in vitro and within a complex biological environment.

I propose to develop uniquely modular IBPAs to perform the quantitative single-molecule and physico-chemical experiments essential to bridge this knowledge gap and to engineer ice-binders optimized for cryopreservation. Our first aim is the biosynthesis of a novel class of ice-binding protein-polymers (iPP) with systematic variations in composition and size. Ice nucleators with a broad range of sizes will be created from iPPs of variable chain length by dissolution, self-assembly and surface-tethering to nanoparticles of variable dimensions. Super-resolution microscopy experiments of iPP ice-binding will deliver high-resolution maps of spatiotemporal distribution and dynamics. These will be related to iPP structure, physico-chemical properties, ice recrystallization inhibition (IRI) and ice nucleation (IN) activity. These insights will translate into the next generation of bioactive iPPs tailored to maximize both IRI and IN. Their impact on heart cell and tissue cryopreservation will be examined to advance our fundamental understanding of freeze injury and dramatically improve post-thaw recovery as well as structural and functional integrity without adverse effects.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

TECHNISCHE UNIVERSITEIT EINDHOVEN
Aportación neta de la UEn
€ 1 999 535,00
Dirección
GROENE LOPER 3
5612 AE Eindhoven
Países Bajos

Ver en el mapa

Región
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 999 535,00

Beneficiarios (1)