Descrizione del progetto
Nuova classe di crioprotettori a base di proteine polimeriche
Crioprotettori efficienti e non tossici sono fondamentali per lo stoccaggio a lungo termine di cellule e tessuti utili usati come agenti terapeutici nella medicina rigenerativa. I biopolimeri conosciuti come proteine leganti il ghiaccio (IBP, Ice-Binding Proteins) sono in grado di prevenire le lesioni da congelamento tenendo sotto controllo la nucleazione e la formazione dei cristalli di ghiaccio. Il progetto PROTECT, finanziato dall’UE, si propone di sviluppare le IBP modulari per eseguire gli esperimenti fisico-chimici quantitativi necessari a comprendere cosa governa l’attività delle IBP come inibitori delle lesioni da congelamento a livello di singola molecola e per ottimizzare la crioconservazione. L’obiettivo è quello di sintetizzare una nuova classe di polimeri proteici leganti il ghiaccio e, utilizzando la microscopia a super risoluzione, valutarne impatto sulla crioconservazione di cellule e tessuti cardiaci.
Obiettivo
Efficient, non-toxic cryoprotectants, that allow long-term storage of viable therapeutic cells and tissues, are the tool that regenerative medicine requires for its successful realization into a viable therapeutic option. A remarkable class of biopolymers known as ice-binding proteins (IBPs) alleviate the risk of freeze injury throughout the Kingdoms of Life by keeping the nucleation and growth of ice crystals in check. Yet, the application potential of IBP analogues (IBPAs) as cryoprotectants has remained underexploited. This is because we are yet to unravel and utilize the structure-function relations, which govern the activity of IBPAs as inhibitors of ice recrystallization and promoters of ice nucleation at the single-molecule level in vitro and within a complex biological environment.
I propose to develop uniquely modular IBPAs to perform the quantitative single-molecule and physico-chemical experiments essential to bridge this knowledge gap and to engineer ice-binders optimized for cryopreservation. Our first aim is the biosynthesis of a novel class of ice-binding protein-polymers (iPP) with systematic variations in composition and size. Ice nucleators with a broad range of sizes will be created from iPPs of variable chain length by dissolution, self-assembly and surface-tethering to nanoparticles of variable dimensions. Super-resolution microscopy experiments of iPP ice-binding will deliver high-resolution maps of spatiotemporal distribution and dynamics. These will be related to iPP structure, physico-chemical properties, ice recrystallization inhibition (IRI) and ice nucleation (IN) activity. These insights will translate into the next generation of bioactive iPPs tailored to maximize both IRI and IN. Their impact on heart cell and tissue cryopreservation will be examined to advance our fundamental understanding of freeze injury and dramatically improve post-thaw recovery as well as structural and functional integrity without adverse effects.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
5612 AE Eindhoven
Paesi Bassi