Project description
The role of programmed DNA elimination in evolution and development
In some organisms, the genomes of germline and somatic cells differ substantially. Programmed DNA elimination is considered to be responsible for this observation as it removes genes and repetitive elements during somatic cell differentiation. The EU-funded GermlineChrom project will focus on the germline-restricted chromosome encountered in the germline of certain bird species, such as the zebra finch, and believed to contain genetic material dispensable or detrimental for somatic cells. Researchers will study and provide fundamental insight into the role of programmed DNA elimination, how it has evolved and its inheritance mechanism in the zebra finch.
Objective
Many multicellular organisms have a division between germline and soma. It has been long-standing dogma that all these cells have the same genome as they develop from a single cell. However, programmed DNA elimination can remove DNA during germline–soma differentiation and thereby lead to dramatic differences in genome organization between tissues. The evolution and function of programmed DNA elimination remains mysterious due to technological limitations and lack of an evolutionary framework. However, a role of this phenomenon in minimizing germline–soma genetic conflict has been suggested. This conflict arises when developmental gene expression is beneficial for the germline but deleterious for the soma.
The aim of this proposal is to test whether programmed DNA elimination allows germline-specific expression of developmental genes to minimize germline–soma conflict. Using the germline-restricted chromosome (GRC) of the zebra finch as a unique study system, I have recently pioneered high-throughput genomics to overcome previous limitations. Combining my novel approach with transcriptomics, proteomics, cytogenetics, and developmental and functional genomics will provide unprecedented insights into the evolution and function of germline–soma genome differences.
First, I will establish the so far first GRC study system by generating a zebra finch GRC reference assembly. Second, I will test how the GRC is inherited and maintained in zebra finch populations. Third, I will elucidate the long-term evolutionary history of GRCs across songbirds to reveal genes that are most conserved and thus candidates for GRC function. Fourth, I will trace GRC expression and elimination across zebra finch development, and functionally validate candidate genes. Altogether, I will establish an evolutionary framework which will significantly advance our understanding of programmed DNA elimination during germline–soma differentiation, a phenomenon likely widespread across the Tree of Life.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Programme(s)
Funding Scheme
ERC-COG - Consolidator GrantHost institution
53113 Bonn
Germany