Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Establishing a global observational view of the early stages of planet formation and evolution

Project description

Unveiling the early stages of planet formation

Protoplanetary disks – dense disks made of gas and dust that surround newly formed stars – are the birthplaces of planets. The exact processes of planet formation and evolution, however, has eluded scientists. As protoplanetary disks evolve and dissipate rapidly, it is crucial to observe forming planets and study their interactions with their host disk. The EU-funded PROTOPLANETS project will investigate the early formation stages and evolution of planetary systems by using cutting-edge observational data of protoplanetary disks, calibrated with advanced data processing techniques. The ultimate aim is to understand the diversity of exoplanetary systems by linking protoplanets' properties with those of the protoplanetary disk.

Objective

Recent observing campaigns have revealed a great diversity in exoplanetary systems whose origin is yet to be understood. How and when planets form, and how they evolve and interact with their birth environment, the protoplanetary disks, are major open questions. Protoplanetary disks evolve and dissipate rapidly while planets are forming, implying a direct feedback between the processes of planet formation and disk evolution. Observing protoplanets still in the early stages of formation and studying their imprints on the disk structure is therefore crucial.

PROTOPLANETS aims to establish a global observational picture of the early stages of planetary systems formation and evolution. My team and I will analyze cutting-edge observations on a large sample of protoplanetary disks, calibrated with novel data processing technics and modelled in the light of state-of-the-art simulations, to:
(1) search for giant protoplanets still embedded in disks;
(2) study the imprints of planet-disk interactions and their dependence on stellar/disk properties;
(3) reveal the impact of planets on the disk structure and dust evolution;
(4) determine the conditions for terrestrial planet formation in the inner disk regions.

The overall ambition of PROTOPLANETS is to understand the diversity of exoplanetary systems by linking the properties of protoplanets with those of the inner and outer disk regions.

The project builds on a novel methodology to detect giant protoplanets and at the same time, characterize the birth environment shaped by those planets. As demonstrated by our recent discovery of the first protoplanet imaged in a disk, the direct detection and characterization of protoplanets will be a major breakthrough, enabling probing of processes of planet formation that could only be addressed theoretically before. The properties of such forming planets, constrained by the proposed research, will offer key insights into the timescales, location and processes of planet formation.

Host institution

UNIVERSITE GRENOBLE ALPES
Net EU contribution
€ 1 673 510,00
Address
621 AVENUE CENTRALE
38058 Grenoble
France

See on map

Region
Auvergne-Rhône-Alpes Rhône-Alpes Isère
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 673 510,00

Beneficiaries (2)