Project description
Unveiling the early stages of planet formation
Protoplanetary disks – dense disks made of gas and dust that surround newly formed stars – are the birthplaces of planets. The exact processes of planet formation and evolution, however, has eluded scientists. As protoplanetary disks evolve and dissipate rapidly, it is crucial to observe forming planets and study their interactions with their host disk. The EU-funded PROTOPLANETS project will investigate the early formation stages and evolution of planetary systems by using cutting-edge observational data of protoplanetary disks, calibrated with advanced data processing techniques. The ultimate aim is to understand the diversity of exoplanetary systems by linking protoplanets' properties with those of the protoplanetary disk.
Objective
Recent observing campaigns have revealed a great diversity in exoplanetary systems whose origin is yet to be understood. How and when planets form, and how they evolve and interact with their birth environment, the protoplanetary disks, are major open questions. Protoplanetary disks evolve and dissipate rapidly while planets are forming, implying a direct feedback between the processes of planet formation and disk evolution. Observing protoplanets still in the early stages of formation and studying their imprints on the disk structure is therefore crucial.
PROTOPLANETS aims to establish a global observational picture of the early stages of planetary systems formation and evolution. My team and I will analyze cutting-edge observations on a large sample of protoplanetary disks, calibrated with novel data processing technics and modelled in the light of state-of-the-art simulations, to:
(1) search for giant protoplanets still embedded in disks;
(2) study the imprints of planet-disk interactions and their dependence on stellar/disk properties;
(3) reveal the impact of planets on the disk structure and dust evolution;
(4) determine the conditions for terrestrial planet formation in the inner disk regions.
The overall ambition of PROTOPLANETS is to understand the diversity of exoplanetary systems by linking the properties of protoplanets with those of the inner and outer disk regions.
The project builds on a novel methodology to detect giant protoplanets and at the same time, characterize the birth environment shaped by those planets. As demonstrated by our recent discovery of the first protoplanet imaged in a disk, the direct detection and characterization of protoplanets will be a major breakthrough, enabling probing of processes of planet formation that could only be addressed theoretically before. The properties of such forming planets, constrained by the proposed research, will offer key insights into the timescales, location and processes of planet formation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.