Project description
Synthetic embryos help study embryonic development
The period of embryonic development is central for the survival and fitness of any organism. However, the study of human embryogenesis has been hampered by the limited availability of human embryos, and there are many aspects that remain unclear. The EU-funded BLASTOID project aims to develop synthetic embryos from human stem cells that assemble into pre-implantation blastocysts. Alongside uterine organoids, these blastoids will help researchers study the process of embryogenesis and implantation. Since these stem cells can be genetically engineered, they constitute a powerful in vitro tool for studying drugs for improving implantation.
Objective
The first weeks of human embryonic development are crucial. Early abnormalities or insults result not only in infertility, but also contribute to long-term impairment of human health (e.g. cardiovascular disease and diabetes). Managing the onset of pregnancy therefore offers a huge opportunity to improve public health through effective family planning and disease prevention.
To better manage pregnancy, biomedical research would require large numbers of human embryos for use in genetic and drug screening. Unfortunately, however, the scarcity of human embryos makes this impossible. Recently, hope for an alternative approach has come from work in my lab showing that mouse stem cells self-organize into structures closely resembling pre-implantation embryos (a.k.a. blastocysts), that we termed blastoids. Because stem cells can be largely expanded and genetically-modified, these synthetic embryos provide a powerful, scalable alternative that is amenable to drug and genetic screens, thus opening numerous possibilities for therapeutic breakthroughs.
Here, I propose the development of human blastoids and uterine organoids to model embryogenesis and uterine implantation in vitro. This platform will be used to identify potential targets for the therapeutic modulation of the molecular pathways that control (1) early embryogenesis and (2) interactions between the embryo and uterus, and will pave the way to (3) establishing a drug discovery pipeline for the management of implantation.
This project will generate key insights into druggable molecules controlling early human embryogenesis, facilitating identification of therapeutic targets to improve in vitro fertilization (IVF) procedures and contraception and, ultimately, to prevent several chronic diseases.
Fields of science
- medical and health sciencesbasic medicinepharmacology and pharmacydrug discovery
- medical and health scienceshealth sciencessocial biomedical sciencesfamily planning
- natural sciencesbiological sciencesdevelopmental biology
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- medical and health sciencesclinical medicineembryology
Programme(s)
Funding Scheme
ERC-COG - Consolidator GrantHost institution
1030 Wien
Austria