Project description
Studying carbonyl sulfide to understand CO2
Free-air CO2 enrichment (FACE) studies have provided novel insights into CO2 rises and trees forming symbiotic relationships with ectomycorrhizal (EM) fungi. This may accumulate biomass more readily than trees in symbiosis with arbuscular mycorrhizal (AM) fungi, especially in nutrient-poor soils. The ERC-funded COSMYCA project will quantify EM and AM fungal carbonic anhydrase activity for the first time and characterise mechanistically how CO2 levels and nutrients drive changes in fungal enzyme activity, weathering rates and soil organic matter mineralisation, and their large scale consequences on the carbonyl sulfide and CO2 budgets over the last century. The project’s research will be in line to help the EU achieve its ambitious commitment to be climate-neutral by 2050.
Objective
The recent activity of humans has had such a profound impact on the chemistry of the Earth’s atmosphere that ecosystems and societies face a ‘human-induced’ climate crisis. Given the key role of the biosphere in climate change feedbacks, the Paris Agreement emphasised every effort should now be taken to ensure ecosystems are managed to reduce the growth rate of atmospheric CO2 without altering climate. However, Land Surface Models (LSM) still lack consensus on critical processes driving the exchange of CO2 between ecosystems and the atmosphere. Variations in atmospheric carbonyl sulphide (COS) could provide independent constraints on LSM performance at large scales and evidence for the recent ‘CO2 fertilisation’ effect on the biosphere. Free-Air CO2 Enrichment (FACE) studies also reveal that, as CO2 rises, trees forming symbiotic relationships with ectomycorrhizal (EM) fungi may accumulate biomass more readily than trees in symbiosis with arbuscular mycorrhizal (AM) fungi, especially in nutrient-poor soils. So far, incorporating EM and AM functional traits into LSMs remains a challenge. Representing key differences in AM and EM plant root and fungal processes in LSMs such as the secretion of acids and enzymes into the soil will be necessary, as they augment organic matter mineralisation and soil weathering, impacting atmospheric CO2, and potentially COS budgets. Because EM plants tend to grow on acidic soils, EM fungi should express more carbonic anhydrase (CA) an enzyme that helps regulate their internal pH, with repercussions on COS fluxes. As nitrogen availability inhibits CA activity this may help explain why the growth of EM plants is reduced in acid environments. COSMYCA will quantify EM and AM fungal CA activity for the first time and characterise mechanistically how CO2 levels and nutrients drive changes in fungal enzyme activity, weathering rates and SOM mineralisation, and their large-scale consequences on the COS and CO2 budgets over the last century.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology biosphera
- natural sciences biological sciences ecology ecosystems
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75007 PARIS CEDEX 07
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.