Project description
Insight into the structure of magmatic systems
Volcanologists watch for changes in magma that cause other phenomena. For instance, magma moving toward the surface usually causes swarms of earthquakes. With the aim of improving forecasting skills, the ERC-funded MAST project will draw on the improved observations of magmatic systems. It will consider the geophysical and petrological evidence that a fluid-dominated ‘magma chamber’ is only one component of a much larger system with a heterogeneous distribution of melts, crystals and gases. The project will also use data collected by satellite images (dense time-series of high-resolution images), showing the complexity and diversity that was not apparent when only infrequent point measurements were available.
Objective
Volcanic unrest can give warning of impending eruptions, thus monitoring and appropriate emergency management saves lives. However, the ability to accurately forecast the future behaviour of individual volcanoes relies on interpreting changes in the underlying magmatic system. The conceptual understanding of magmatic systems has evolved rapidly and there is now ample geophysical and petrological evidence that a fluid-dominated ‘magma chamber’ is only one component of a much larger system with a heterogeneous distribution of melts, crystals and gases. The opportunity exists to use these advances to interpret monitoring signals, to improve forecasting skills and in turn contribute to the paradigm shift in understanding. In particular, satellite technology has revolutionised the coverage, resolution and frequency of deformation measurements and is increasingly used for volcano monitoring. Dense time-series of high-resolution images reveal complexity and diversity than was not apparent when only infrequent point measurements were available. The latest images are more compatible with the paradigm of extensive multiphase, magmatic systems, but even the most recent models still rely on spheroidal chamber geometries.
The aims of MAST are thus 1) to analyse and model volcano deformation independent of constraints on geometry or rheology and 2) to link the long-term evolution of the temperature and melt fraction to patterns of surface deformation. These aims capitalise on the rise of satellite data, and recent advances in machine learning, strain imaging and the modelling of multiphase systems. The outputs will provide a scientific basis for observatories to interpret signals observed during unrest and to forecast future activity. Most importantly, the outputs will be consistent with – and contribute to - the latest understanding of magmatic systems. This multidisciplinary proposal is inherently high risk, but builds on my experience leading a broad team of investigators.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences earth and related environmental sciences geology volcanology
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU BRISTOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.