Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multi-Qubit Photonic Devices

Project description

A novel type of quantum dots brings quantum internet a step closer

Semiconductor quantum dots serve as a core element in emerging photonic quantum technologies by allowing the on-demand generation of single photons and entangled photon pairs. However, the key to practical quantum photonic networks is to create multi-qubit devices with photonic interfaces. The EU-funded MultiQubit project plans to develop practical multi-qubit photonic devices for quantum networks based on novel crystal-phase quantum dots. This is a recently developed technology that allows the fabrication of quantum devices with precision down to a single atomic layer. The project aims to design a quantum network of multi-qubit photonic devices that could potentially prototype the forthcoming Quantum Internet.

Objective

MultiQubit is built on the concept of a novel type of quantum dots — crystal-phase quantum dots — discovered and developed by the PI. Crystal-phase quantum dots have a unique advantage — growth control with the ultimate accuracy of a single atomic layer. This advantage will break the major limitation in the field of optically-active quantum dots — impossibility to build quantum devices with multiple quantum dots due to lack of the required growth control — and thus unlock their true potential for Quantum Technologies. Based on these, MultiQubit is committed to creating a robust technological platform for making solid-state multi-qubit devices with a photonic interface. This platform shall be a game-changer in Quantum Technologies, allowing to connect quantum computers across the world. In particular, MultiQubit will develop and demonstrate all the steps from the fabrication of basic quantum structures to distributed entanglement between remote nodes of a multi-qubit Quantum Information Network. For the successful realization of these ideas, the PI proposes three key objectives:

1. Explore and demonstrate a novel crystal-phase qubit — the central element of MultiQubit. This qubit is based on crystal-phase quantum dots, which are fully designable and scalable, because their geometry can be controlled with the ultimate accuracy of a single atomic layer during the growth.

2. Build the first designable and scalable multi-qubit quantum register with a photonic interface. This is one of the major components in Quantum Information Networks to be implemented.

3. Design and demonstrate a quantum network of multi-qubit photonic devices. This may be a potential prototype of the forthcoming Quantum Internet.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 359 678,75
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 359 678,75

Beneficiaries (2)

My booklet 0 0