Description du projet
En mission astrophysique pour étudier la formation des étoiles
Des méthodes de mégadonnées et d’apprentissage automatique hybride seront utilisées pour explorer la plus grande collection de données panchromatiques de jeunes objets stellaires. Ouvrant la voie à des applications scientifiques à forte intensité de données dans le domaine de l’astrophysique moderne, le projet NEMESIS, financé par l’UE, améliorera notre compréhension de la formation des étoiles. Des données récentes suggèrent que les planètes se forment de manière synchrone plutôt que séquentielle par rapport à leurs étoiles hôtes, ce qui indique une évolution précoce rapide des systèmes étoile-planète. NEMESIS identifiera les transitions caractéristiques qui décrivent chaque phase de la formation des étoiles. Plus précisément, il réexaminera le plan de classification actuel et ses échelles de temps caractéristiques afin de le faire concorder avec les contraintes observationnelles et théoriques les plus récentes.
Objectif
NEMESIS has the ambition to reshape our understanding on the formation of stars by employing artificial intelligence methods to interpret the largest, panchromatic data collection of young stellar objects. Recent evidence suggests that planets form synchronously rather than sequentially to their host stars, indicating a rapid early evolution of star-planet systems. To ascertain these timescales, it is necessary to first determine the characteristic transitions that describe each phase of star formation. The definition of classes for young stellar objects was made possible more than 30 years ago, due to the first space-based infrared sky surveys. Whilst successful in determining global properties, current classification is prone to large uncertainties, and therefore, timescales, which are based on population statistics among different classes in a steady-state evolution, remain dubious.
NEMESIS aims to readjust the current classification scheme and its characteristic timescales so that it is concurrent with the most recent observational and theoretical constraints. To meet these goals NEMESIS will compile the largest, panchromatic dataset comprising of all young stellar objects in nearby star-forming regions, harnessing critical information that resides in data from space missions. It will reprocess and analyze this unique dataset with supervised and unsupervised machine learning algorithms, deep learning neural networks for object detection, clustering and regression analysis of images in order to advance the analysis and interpretation beyond the current state-of-the-art. Ultimately, NEMESIS brings big data techniques and hybrid machine learning methods to systematically analyze and interpret large data volumes in order to answer some of the most persisting questions, paving the path toward data-intensive science applications in modern astrophysics.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
- sciences naturelles informatique et science de l'information science des données mégadonnées
- sciences naturelles sciences physiques astronomie astrophysique
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
- sciences naturelles sciences physiques astronomie astronomie stellaire
- sciences naturelles informatique et science de l'information intelligence artificielle intelligence de calcul
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.2.1.6.3. - Enabling exploitation of space data
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
RIA - Research and Innovation action
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-SPACE-2018-2020
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1121 Budapest
Hongrie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.