Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Off-Design Installed Nacelles

Project description

Optimising novel engine designs to reduce fuel consumption, noise and emissions

Decreasing aircraft fuel consumption reduces emissions and operating costs. One of the most promising solutions is the ultra-high bypass ratio (UHBR) turbofan engine. The bypass ratio of a turbofan engine is the ratio of air bypassing the engine core versus going through it and, subsequently, the contribution of each of these to thrust. Increasing the bypass flux has generally involved larger diameter engine housings, which can increase drag as well as vibration and noise in the airframe, and negate some of the benefits of the additional thrust. The EU-funded ODIN project is characterising aerodynamic flows in compact UHBR engine models during various flight conditions and scenarios using computational and experimental methods.

Objective

Ultra-high bypass ratio engines offer propulsive efficiency improvements and potential fuel burn reduction. The associated larger diameter can lead to an increase in nacelle drag that can erode the expected cycle benefits. Also, larger engines are likely to be closely coupled with the aircraft. Consequently, compact nacelles are needed to counter these aspects and to translate cycle fuel burn benefits into combined engine-airframe performance. An objective of ODIN is to develop design capability and detailed aerodynamic knowledge for installed compact nacelles to operate at off-design conditions such as take-off high lift, windmill and idle. Within a wider context of future power-plant integration, ODIN’s objectives include the improved understanding of exhaust suppression and jet-flap interaction noise. The viable design space for compact nacelles will be determined, across cruise and off-design conditions, with a multi-objective, multi-point optimisation method. High fidelity computations, and state-of-the-art high-resolution measurements with a novel section test rig, will reveal detailed aerodynamics of the design-limiting flow separation mechanisms. A synthesis of the multi-fidelity computational and experimental data will provide a calibration of the medium fidelity methods required for industrial design. An advanced dual-stream exhaust rig test will quantify installed exhaust suppression and jet-flap interaction noise and provide unique data to calibrate the computational methods at design and off-design conditions. Design constraints imposed by noise levels will be identified through experiments and high fidelity acoustic computations, which will also propose acoustic sensor layouts for the UHBR flight test demonstrator. Overall, ODIN will deliver validated design guidelines for novel nacelles to ensure cruise and off-design performance as well as the validation of computational methods for jet noise and exhaust suppression modelling.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-CS2-CFP11-2020-01

See all projects funded under this call

Coordinator

CRANFIELD UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 628 097,50
Address
College Road
MK43 0AL Cranfield - Bedfordshire
United Kingdom

See on map

Region
East of England Bedfordshire and Hertfordshire Central Bedfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 628 097,50

Participants (3)

My booklet 0 0