European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Emergent Complexity from strong Interactions

Description du projet

Démêler les nuances des interactions fortes

La force forte est la plus puissante des quatre forces ou interactions fondamentales décrites par le modèle standard de la physique des particules. Elle n’est efficace que sur de très courtes distances, et est donc essentielle au niveau des particules subatomiques. C’est la «colle» qui confine les quarks pour former des particules hadroniques telles que les protons et les neutrons et qui les maintient dans le noyau. Le projet EXOTIC, financé par l’UE, appliquera les avancées de la théorie des champs réalisées par ses chercheurs pour répondre à d’importantes questions ouvertes concernant les hadrons, les noyaux atomiques, les hypernoyaux et la nucléosynthèse dans le contexte de la force forte. Ces méthodes permettent d’étudier des univers alternatifs, où la force forte est différente de ce que l’on observe dans la nature.

Objectif

The least understood part of the so successful Standard Model of the strong and electroweak forces
is the formation of strongly interacting composites, like hadrons, atomic nuclei and hypernuclei. In
addition, the nucleosynthesis in the Big Bang and in stars is fine-tuned at various places, which
immediately leads to the question how much these fine-tunings can be offset to still lead to an habitable
universe?
Over the last decade, the PI and his collaborators have further improved the chiral effective field
theory for two- and three-nucleon forces, have pioneered and refined the extension of this approach to
baryon-baryon interactions and, most importantly, have developed nuclear lattice effective field theory,
which enabled them to solve longstanding problems in nuclear physics, like the ab initio calculation of
the Hoyle state in 12C. Based on these achievements, this proposal will provide answers to: i) where
are the limits of nuclear stability? ii) what hypernuclei can exist, what are their properties and how is
the equation of state of neutron matter modied by the presence of strange quarks?
and iii) what limits on the fundamental parameters of the Standard Model are set by the fine-tunings in
nucleosynthesis in the Big Bang and in stars?
Apart from answering these big science questions, the proposal will, as a by-product, develop methods
in effective field theories and Monte Carlo simulations that will be of use in other fields, such as cold
atom and condensed matter physics.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Contribution nette de l'UE
€ 2 269 197,00
Adresse
REGINA PACIS WEG 3
53113 Bonn
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 269 197,50

Bénéficiaires (1)