Project description
Deciphering abrupt climate transitions in Greenland ice cores
Polar ice cores are amongst the most significant natural archives providing information about abrupt climate transitions. Underlying climate mechanics have yet to be fully deciphered, especially the processes that initiate abrupt changes, but conventional cm-resolution melting techniques struggle to provide the required fine temporal analysis due to continuously thinning ice layers. Laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) technology offers micro-destructive ice core impurity analysis at micron-scale resolution. EU-funded MICRO-CLIMATE connects, for the first time, two pioneering LA-ICP-MS set-ups at the Universities of Maine and Venice. The project will realise high-throughput and high-detail analysis to (i) identify the imprint of the ice matrix and constrain signal preservation, and (ii) decipher the timing of changes in marine, terrestrial and atmospheric proxies.
Objective
Understanding natural climate dynamics is fundamental to anticipate, avoid, and assess mitigation potential for abrupt climate change, one of the grand challenges to global sustainability. As one of the most important natural archives, polar ice cores have led to the discovery of past abrupt climate transitions, such as the abrupt onset of stadial-interstadial warming in Greenland, happening as fast as just a few decades. The underlying processes remain to be fully deciphered, especially whether oceanic or atmospheric changes initiate abrupt changes, or if they act simultaneously. To study the sequence of events requires fine temporal detail, which conventional cm-resolution melting techniques cannot provide due to continuous thinning of ice layers. Laser-Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) is a key technology in this respect, offering micro-destructive ice core impurity analysis at micron scale-resolution. At this high resolution, however, it is pivotal to avoid misinterpretation by taking into account interaction of impurities with the ice crystal matrix. MICRO-CLIMATE brings together, for the first time, two state-of-the-art LA-ICP-MS setups (at the Universities of Maine and Venice) to realize what one partner could not achieve alone: high-throughput AND high detail analysis for constraining signal preservation. In Venice, imaging the 2D impurity distribution detects the imprint of the ice matrix. In Maine, impurity profiles over meter-long ice core rods are investigated to decipher the timing of changes in marine, terrestrial and atmospheric proxies, before, during and after abrupt transitions. By this means a high-resolution fingerprint of the abrupt change is unfolded – which climate components change first, which follow? Ultimately, the project will advance our understanding of how to interpret ice core geochemistry at high-resolution and produce a refined LA-ICPMS application that can be employed in upcoming ice core projects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences geochemistry
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30123 VENEZIA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.