Project description
Removing restrictions in the search for causes of turbulence
Modelling systems behaviours based on previous behaviours has been extremely useful to our understanding of processes from climate change and environmental pollution to pharmaceutical activities or a nanomaterial’s toxic effects. However, these algorithms, much like human beings themselves, can converge towards solutions and ‘suggestions’ that have been influenced by prior knowledge and assumptions. The EU-funded CausT project is taking advantage of today’s state-of-the-art computing power and Monte Carlo simulation methods to turn this process upside down to identify novel turbulent flow structures. Rather than defining or restricting the properties important to turbulent flow structures, scientists will look for flow configurations most sensitive to perturbations and unveil their properties.
Objective
Simulations have driven many recent scientific advances. In the case of the physics of fluid turbulence, they have involved some of the most expensive computations at any time, but faster computers now permit meaningful simulations to run in minutes in a modest machine. This proposal centres on exploring the role of simulations in this limit of ‘zero’ computing cost, and on the analysis of the resulting data. What ‘free’ simulations allow is ‘Monte-Carlo’ research, in which ideas are ‘randomly’ tested and only evaluated afterwards, in the hope that some of them be fruitful. Their main advantage is to alleviate ‘paradigm lock’, in which radically new ideas are unlikely to get tested and knowledge gets stuck in a local optimum. But ensembles of cheap simulations also provide causal information about what the effect of a particular ‘random’ initial condition is. The main result in turbulence is expected to be the identification of novel flow structures, with definitions grounded in the underlying physics. Up to now, structures have mostly been described in terms of properties assumed to be important (e.g. intensity), with their effect on the flow being tested a-posteriori, but Monte-Carlo search allows us to reverse the process, identifying structures from their effects. In particular, we will search for flow configurations that are ‘causally most sensitive’ to perturbations, in the sense that the perturbations are most effective when applied to them. Both the probing perturbations and the receptive flow states constitute ‘causes’. The implied definition of causality only applies over times of the order of a turnover, and is connected with control: changing the cause modifies the effect, with obvious applications. The flows examined will mainly be wall-bounded ones, including effects such as rotation and rheology, but we will also examine the general inverse energy and momentum cascades towards larger scales. Some preliminary experiments are described.
                                Keywords
                                
                                    
                                    
                                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
                                        
                                    
                                
                            
                            
                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
            Programme(s)
            
              
              
                Multi-annual funding programmes that define the EU’s priorities for research and innovation.
                
              
            
          
                      Multi-annual funding programmes that define the EU’s priorities for research and innovation.
- 
                  H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
                                      MAIN PROGRAMME
                                    
 See all projects funded under this programme
            Topic(s)
            
              
              
                Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
                
              
            
          
                      
                  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
            Funding Scheme
            
              
              
                Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
                
              
            
          
                      Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
              Call for proposal
                
                  
                  
                    Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
                    
                  
                
            
                          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        