Project description
An integrated control approach for large-scale networks with hybrid dynamics
Controlling large-scale networks with hybrid dynamics is very complex owing to the large size of the networks, the presence of disturbances and the limited computation time. Examples of such networks include road, railway, electricity, gas and water networks. Hybrid dynamics refers to a combination of continuous dynamics, mode switches and topology changes. State-of-the-art control methods are not suited for these large-scale networks as they either suffer from computational tractability issues or impose additional restrictions, resulting in a significantly reduced performance. To address this problem, the EU-funded CLariNet project will develop a new online control paradigm for large-scale networks with hybrid dynamics using a combination of optimisation-based and learning-based control.
Objective
I will develop efficient on-line control methods for large-scale Networks with Hybrid Dynamics (NHDs) in the presence of uncertainties, where hybrid dynamics refers to a combination of continuous dynamics, mode switches, and/or topology changes. This topic is one of the core fundamental open problems in the field of systems and control. It is also important from a societal point of view as todays society depends heavily on the reliable and efficient operation of road, railway, electricity, gas, and water networks, all of which are examples of large-scale NHDs.
Control of large-scale NHDs is a very complex problem due to the large size of the networks, the presence of disturbances, and the hybrid dynamics, while a limited computation time is available. State-of-the-art control methods are not suited for large-scale NHDs as they either suffer from computational tractability issues or impose additional restrictions, resulting in a significantly reduced performance.
To address this problem, I will create a new on-line control paradigm for large-scale NHDs based on an innovative integration of multi-agent optimization-based and learning-based control, allowing to unite the optimality of optimization-based control with the on-line tractability of learning-based control. I will bridge the gap between optimization-based and learning-based control for NHDs through the use of multi-scale multi-resolution piecewise affine models, explicit consideration of the graph structure of the network, the unique knowledge and experience I have in both optimization-based control and learning-based decision making, and an interdisciplinary integration of approaches from systems and control, computer science, and optimization.
This will result in systematic, very reliable, highly scalable, high-performance on-line control methods for large-scale NHDs. I will demonstrate their feasibility, benefits, and impact for green multi-modal transportation networks and smart multi-energy networks.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.