Descripción del proyecto
Un método de control integrado para redes a gran escala con dinámica híbrida
Controlar redes a gran escala con dinámica híbrida es muy complejo debido al gran tamaño de las redes, la presencia de perturbaciones y el limitado tiempo de cálculo. Entre los ejemplos de este tipo de redes están las redes viarias, ferroviarias, eléctricas, de gas y de agua. La dinámica híbrida se refiere a una combinación de dinámica continua, cambios de modo y cambios topológicos. Los métodos de control de última generación no son adecuados para estas redes a gran escala, pues tienen problemas de tratabilidad computacional o imponen restricciones adicionales, lo que resulta en un rendimiento significativamente menor. Para abordar este problema, el proyecto financiado con fondos europeos CLariNet desarrollará un nuevo paradigma de control en línea para redes a gran escala con dinámica híbrida usando una combinación de control basado en el aprendizaje y control basado en la optimización.
Objetivo
I will develop efficient on-line control methods for large-scale Networks with Hybrid Dynamics (NHDs) in the presence of uncertainties, where hybrid dynamics refers to a combination of continuous dynamics, mode switches, and/or topology changes. This topic is one of the core fundamental open problems in the field of systems and control. It is also important from a societal point of view as todays society depends heavily on the reliable and efficient operation of road, railway, electricity, gas, and water networks, all of which are examples of large-scale NHDs.
Control of large-scale NHDs is a very complex problem due to the large size of the networks, the presence of disturbances, and the hybrid dynamics, while a limited computation time is available. State-of-the-art control methods are not suited for large-scale NHDs as they either suffer from computational tractability issues or impose additional restrictions, resulting in a significantly reduced performance.
To address this problem, I will create a new on-line control paradigm for large-scale NHDs based on an innovative integration of multi-agent optimization-based and learning-based control, allowing to unite the optimality of optimization-based control with the on-line tractability of learning-based control. I will bridge the gap between optimization-based and learning-based control for NHDs through the use of multi-scale multi-resolution piecewise affine models, explicit consideration of the graph structure of the network, the unique knowledge and experience I have in both optimization-based control and learning-based decision making, and an interdisciplinary integration of approaches from systems and control, computer science, and optimization.
This will result in systematic, very reliable, highly scalable, high-performance on-line control methods for large-scale NHDs. I will demonstrate their feasibility, benefits, and impact for green multi-modal transportation networks and smart multi-energy networks.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
2628 CN Delft
Países Bajos