Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Many-body Dynamics and Universality in Flatland

Project description

Study could offer fundamental insight into the dynamics of 2D gases far from equilibrium

Advances in experimental and theoretical physics have offered new insight into the dynamics and properties of quantum many-body systems. Recognising that multiple, seemingly disparate many-body systems are fundamentally alike has led to the classification of the equilibrium states of matter into universality classes. These classes describe many systems whose properties are independent of the dynamic interactions between their constitutive elements. The EU-funded UniFlat project will conduct a series of coordinated experiments on homogeneous atomic gases in 2D ‘Flatland’ geometry. Specifically, researchers will study in parallel three paradigmatic problems – the dynamics of the topological Berezinskii–Kosterlitz–Thouless phase transition, turbulence in systems driven far from equilibrium and the universal spatiotemporal scaling behaviour in isolated quantum systems far from equilibrium.

Objective

One of the great successes of the last-century physics was recognising that many complex and seemingly disparate many-particle systems are fundamentally alike. This allowed the classification of the equilibrium states of matter into universality classes, based on their basic properties such as symmetries and the form of the interparticle interactions. At the heart of this classification is the universal collective behaviour, insensitive to the microscopic details, displayed by systems close to phase transitions. A grand challenge for modern physics is to achieve such a feat for the far richer world of the non-equilibrium collective phenomena. In recent years, theories that posit universal features of far-from-equilibrium many-body dynamics, common to systems as diverse as quantum magnets and the quark-gluon plasma, have been receiving support from experiments on the highly tuneable ultracold atomic gases. Our ambition is to make a leading contribution to this worldwide effort, through a series of coordinated experiments on homogeneous atomic gases in two-dimensional (2D) ‘Flatland’ geometry. Specifically, we will study in parallel three paradigmatic problems – the dynamics of the topological Berezinskii-Kosterlitz-Thouless phase transition, turbulence in driven systems, and the universal spatiotemporal scaling behaviour in isolated quantum systems far from equilibrium. Each of these topics is fascinating and of fundamental importance in its own right, but beyond that we will experimentally establish an emerging picture that coherently connects them.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-ADG

See all projects funded under this call

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 425 898,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 425 898,00

Beneficiaries (1)

My booklet 0 0