Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanisms of gradient decoding in fission yeast

Project description

Dissecting the mechanism of cell orientation during sexual reproduction

Various cells in our body, such as immune cells or neurons, orient or migrate towards chemical cues through a process known as chemotaxis. The external chemical gradient is translated into an intracellular signalling gradient that drives cell polarisation and directional movement. The EU-funded SexYeast project is interested in understanding the mechanism by which cells decode chemical gradients. Researchers will employ the fission yeast Schizosaccharomyces pombe as a model system to study pheromone sensing during sexual reproduction. Results will provide fundamental knowledge on the interaction of cells with their environment with an impact on many fields of biology.

Objective

How does a cell orient in response to a chemical cue? This basic problem is at the core of how cells interact with their environment. Indeed, the ability to move towards the source of a chemical gradient underlies behaviours as diverse as feeding, identifying a foreign invader or building interconnected cellular networks. Furthermore, chemo-orientation forms the basis of gamete recognition, and is thus critical for genome diversification through sexual reproduction.

This proposal makes use of one of the simplest eukaryotic models, the fission yeast S. pombe, to systematically dissect the mechanisms of gradient detection. Gradient sensing occurs during sexual reproduction in a speed-dating process for mate pairing, where dynamic cortical polarity patches secrete pheromones and become stabilized in response to those produced by the other mating type. Chemo-detection depends on a minimal kit of conserved eukaryotic proteins, suggesting that a complete understanding of gradient decoding is possible. We will work towards this goal through four specific aims:

1. to establish the rules of gradient decoding, using unbiased image analysis and caged pheromones;
2. to define the architecture of the communication site, by super-resolution and correlative light-electron microscopy;
3. to probe the molecular regulation of cellular speed-dating, which we hypothesize consists of a spatial decoder and dynamic oscillator;
4. to reveal natural modifiers of speed-dating for mate selection, by exploiting the diversity of wild strain isolates.

By combining advanced live and correlative imaging with optogenetic, genetic, biochemical and genomic methods, this project will bring a conceptual and molecular understanding to the problem of gradient decoding. Due to the ancient and fundamental nature of gradient orientation, our discoveries will have impact on several fields of research, including those of immunity, wound healing, development, sexual reproduction and evolution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-ADG

See all projects funded under this call

Host institution

UNIVERSITE DE GENEVE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 962 105,00
Address
RUE DU GENERAL DUFOUR 24
1211 Geneve
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Genève
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 962 105,00

Beneficiaries (2)

My booklet 0 0