European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Direct Temporal Synthesis of Terahertz Light Fields Enabling Novel Computational Imaging

Descripción del proyecto

Algoritmos informáticos para crear campos fuertes de luz de terahercios en tres dimensiones

El rango de frecuencia de los terahercios (THz) es la última gran frontera del espectro electromagnético y se encuentra por encima de lo que hoy en día es posible con la electrónica rápida y por debajo de lo que es accesible con los láseres sintonizables. La manipulación de este rango de frecuencia permite observar a través de objetos opacos en aplicaciones que van desde la caracterización de materiales a la detección de drogas y explosivos ocultos sin necesidad de emplear la radiación dañina de los rayos X. El equipo del proyecto DIRECTS, financiado con fondos europeos, está desarrollando un método informático para generar campos de luz de THz en tres dimensiones a fin de obtener imágenes transparentes, así como los correspondientes circuitos integrados THz para estudiar estos campos.

Objetivo

The terahertz (THz) frequency range is widely considered as the most challenging and under-developed frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10,000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.

Rarely considered for its complexity, the so-called “light field” consists of all light rays in 3-D space, flowing through every point and in every direction. Thus a light field camera not only records color and brightness like a 2-D imaging sensor does, but also the direction/angle of all the light rays arriving at the sensor. The beauty of this spatio-directional information is that one can localize hidden objects and calculate their covered three-dimensional shape. So what’s the catch? For any practical means, the natural ambient THz radiation is by far too weak, and THz light-fields need to be created artificially.

Here I propose an innovative pathway empowered by massively scaled THz source and detector arrays, which will bring forth the science of computational light-fields to THz 3-D see-through imaging. Starting with newfangled THz source-arrays, I create the missing temporal modulated light-fields directly at the source and investigate a diffraction inclusive THz light-field system theory, architecture and algorithms. This is combined with innovative THz integrated circuits to research real-time THz light-field components. Although the far-reaching objectives incorporate a high risk due to the complexity of the approach connecting physical, computational, and optical sciences with engineering approaches, this is offset by the promise of major breakthroughs to create substantial value for both science and the global economy.

Régimen de financiación

ERC-ADG - Advanced Grant

Institución de acogida

BERGISCHE UNIVERSITAET WUPPERTAL
Aportación neta de la UEn
€ 2 477 947,00
Dirección
GAUSS-STRASSE 20
42119 Wuppertal
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Düsseldorf Wuppertal, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 477 947,00

Beneficiarios (1)