European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Direct Temporal Synthesis of Terahertz Light Fields Enabling Novel Computational Imaging

Descrizione del progetto

Utilizzo di algoritmi computazionali per creare potenti campi di luce terahertz in 3D

La gamma di frequenze dei terahertz (THz) è l’ultima grande frontiera dello spettro elettromagnetico, che si colloca a un livello superiore rispetto a ciò che è possibile raggiungere con l’elettronica veloce e inferiore rispetto a quello accessibile mediante i laser sintonizzabili. La manipolazione di questa gamma di frequenze offre la possibilità di vedere attraverso oggetti opachi in applicazioni che vanno dalla caratterizzazione dei materiali al rilevamento di esplosivi o droghe nascoste senza ricorrere alle radiazioni nocive dei raggi X. Il progetto DIRECTS, finanziato dall’UE, sta sviluppando un approccio computazionale al fine di produrre campi di luce THz in 3D per l’imaging see-through e i relativi circuiti integrati THz allo scopo di farne oggetto di studio.

Obiettivo

The terahertz (THz) frequency range is widely considered as the most challenging and under-developed frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10,000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.

Rarely considered for its complexity, the so-called “light field” consists of all light rays in 3-D space, flowing through every point and in every direction. Thus a light field camera not only records color and brightness like a 2-D imaging sensor does, but also the direction/angle of all the light rays arriving at the sensor. The beauty of this spatio-directional information is that one can localize hidden objects and calculate their covered three-dimensional shape. So what’s the catch? For any practical means, the natural ambient THz radiation is by far too weak, and THz light-fields need to be created artificially.

Here I propose an innovative pathway empowered by massively scaled THz source and detector arrays, which will bring forth the science of computational light-fields to THz 3-D see-through imaging. Starting with newfangled THz source-arrays, I create the missing temporal modulated light-fields directly at the source and investigate a diffraction inclusive THz light-field system theory, architecture and algorithms. This is combined with innovative THz integrated circuits to research real-time THz light-field components. Although the far-reaching objectives incorporate a high risk due to the complexity of the approach connecting physical, computational, and optical sciences with engineering approaches, this is offset by the promise of major breakthroughs to create substantial value for both science and the global economy.

Meccanismo di finanziamento

ERC-ADG - Advanced Grant

Istituzione ospitante

BERGISCHE UNIVERSITAET WUPPERTAL
Contribution nette de l'UE
€ 2 477 947,00
Indirizzo
GAUSS-STRASSE 20
42119 Wuppertal
Germania

Mostra sulla mappa

Regione
Nordrhein-Westfalen Düsseldorf Wuppertal, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 477 947,00

Beneficiari (1)