European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Direct Temporal Synthesis of Terahertz Light Fields Enabling Novel Computational Imaging

Description du projet

Utiliser des algorithmes de calcul pour créer de puissants champs lumineux térahertz 3D

La gamme de fréquences térahertz (THz) constitue la dernière grande frontière du spectre électromagnétique, se situant au-dessus de ce que permet l’électronique rapide et en dessous de ce qui est accessible avec les lasers accordables. La manipulation de cette gamme de fréquences permet de voir à travers des objets opaques dans le cadre d’applications allant de la caractérisation des matériaux à la détection d’explosifs ou de drogues dissimulés, sans recourir aux rayons X, qui sont nocifs. Le projet DIRECTS, financé par l’UE, développe une approche computationnelle permettant de produire des champs lumineux THz 3D pour l’imagerie par transparence, ainsi que les circuits intégrés THz associés pour les étudier.

Objectif

The terahertz (THz) frequency range is widely considered as the most challenging and under-developed frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10,000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.

Rarely considered for its complexity, the so-called “light field” consists of all light rays in 3-D space, flowing through every point and in every direction. Thus a light field camera not only records color and brightness like a 2-D imaging sensor does, but also the direction/angle of all the light rays arriving at the sensor. The beauty of this spatio-directional information is that one can localize hidden objects and calculate their covered three-dimensional shape. So what’s the catch? For any practical means, the natural ambient THz radiation is by far too weak, and THz light-fields need to be created artificially.

Here I propose an innovative pathway empowered by massively scaled THz source and detector arrays, which will bring forth the science of computational light-fields to THz 3-D see-through imaging. Starting with newfangled THz source-arrays, I create the missing temporal modulated light-fields directly at the source and investigate a diffraction inclusive THz light-field system theory, architecture and algorithms. This is combined with innovative THz integrated circuits to research real-time THz light-field components. Although the far-reaching objectives incorporate a high risk due to the complexity of the approach connecting physical, computational, and optical sciences with engineering approaches, this is offset by the promise of major breakthroughs to create substantial value for both science and the global economy.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

BERGISCHE UNIVERSITAET WUPPERTAL
Contribution nette de l'UE
€ 2 477 947,00
Adresse
GAUSS-STRASSE 20
42119 Wuppertal
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Düsseldorf Wuppertal, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 477 947,00

Bénéficiaires (1)