Project description
New toolkit for large-scale behavioural modelling
Effective models of human behaviour are necessary to predict problems and design healthier, safer and more sustainable solutions. Today, new technologies offer improved, data-driven insights. However, to achieve realistic mathematical models applicable in the real world, the full complexity of human decision-making needs to be recognised. The EU-funded SYNERGY project will design new, psychologically coherent models referring to real-world problems, offering a balance between assumptions and data-driven insights. To do so, it will merge three crucial paradigms: psychological (elucidating ways of decision-making), econometric and behavioural (to understand the influences on decision processes) and machine learning-based methods (focusing on specific outcomes). These can contribute to understanding travel and other behaviour during a pandemic.
Objective
The SYNERGY project will unify three key paradigms for the mathematical modelling of human behaviour, namely: i) process models in psychology and cognate disciplines that seek to explain how decisions are made; ii) econometric and behavioural models that explain which factors influence the decision process and to what extent; and iii) data-driven (machine learning) methods that focus on the outcome of the decision process. The different aims and assumptions of these paradigms have resulted in very distinct strengths and weaknesses for each discipline. Only the synergy of the three will fulfil the promise of producing models that are behaviourally consistent, applicable to real-world problems, computationally tractable, and balance a priori assumptions with data-driven insights.
Integrating the three approaches into new Data-Driven Behavioural Models (DDBMs) is a novel, ambitious and highly complex undertaking, but one that is timely given the rapidly changing world, increasing use of models and big data for prediction, and growing interaction between humans and “intelligent machines” that require the latter to accurately predict human behaviour to enable safe and efficient use of AI. The proposed work will result in a paradigm shift for behavioural modelling, with impact in many application domains. SYNERGY will provide analysts with a powerful new toolkit that will allow efficient large-scale behavioural modelling on increasingly rich data while providing interpretable outputs and retaining important foundations in behavioural science.
Alongside major methodological contributions, the proposed research includes large-scale empirical work, applying the new DDBMs to real-world problems with implications for national policy. This includes case studies to understand and predict travel and other behaviour in a COVID-19 environment, and to establish the benefits that more behaviourally consistent AI routines for autonomous vehicles can have for road traffic safety.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.