Project description
New sensors for cardiovascular disease monitoring
Cardiovascular diseases are the leading cause of death worldwide. Innovations for their prevention, monitoring and treatment are extremely important. Most recently, the focus has been on monitoring solutions such as biosignal sensors to detect signs of cardiovascular diseases earlier and commence treatment sooner. Unfortunately, current biosignal sensors are too large, obtrusive and costly for widespread use. The EU-funded UNOPIEZO project will address this by developing ultra-thin piezoelectric polymer based biosignal sensors. The sensors will use printed electronics fabrication technologies. These sensors will be unobtrusive, energy- and cost-efficient and safer for the environment while also being more accurate.
Objective
Goal: The goal of this project is to develop unobtrusive, affordable and accurate piezoelectric sensors for non-invasive biosignal monitoring.
Background: Continuous large-scale health monitoring of risk population carries significant benefits to the society, but is hindered by the lack of unobtrusive, affordable and accurate biosignal sensors. As an example, continuous monitoring of radial arterial pulse wave (PW) signal could enable early detection of cardiovascular diseases (CVDs, most common cause of death) and lead to significant reductions in societal costs associated with their treatment and current screening methods, both of which require hospital visits. Ultra-thin (t < 10 µm) sensors have been recently proposed to enhance the user comfort by recording the PW-signal non-invasively from the skin deformation caused by the pulsating radial/carotid artery located directly underneath the skin. Although the proposed devices have high potential for continuous PW-monitoring due to their unobtrusiveness, they suffer from drawbacks such as high energy consumption, costly fabrication, biocompatibility issues and/or low sensitivity.
Proposal: In order to meet the requirements of unobtrusiveness, affordability and accuracy, it is proposed that such biosignal sensors should be fabricated of piezoelectric polymer P(VDF-TrFE) using printed electronics fabrication technologies. The optical transparency and biocompatibility of P(VDF-TrFE) coupled with ultra-thin form factor of the device should result in sensors that are highly unobtrusive for the user. Furthermore, the ultra-thin form factor coupled with novel charge collector structure should maximize the sensor sensitivity, thereby increasing the accuracy of the biosignal measurement beyond the capabilities of conventional sensor structures. The sensor fabrication with additive and scalable printed electronics fabrication technologies should result in devices that are affordable for the user and for the environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences polymer sciences
- medical and health sciences clinical medicine cardiology cardiovascular diseases
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
33100 TAMPERE
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.