European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Solid state diffusion for atomically sharp interfaces in semiconductor-superconductor hybrid structures

Description du projet

Un compromis subtil renforce le domaine de l’optoélectronique supraconductrice

Les semi-conducteurs, des matériaux qui «conduisent» l’électricité dans certaines conditions, ont révolutionné notre vie en trouvant des applications dans des domaines aussi variés que l’électronique grand public, les cellules solaires et les lasers. L’intégration des semi-conducteurs et des supraconducteurs ouvre la voie à des possibilités illimitées de fonctionnalité pour les dispositifs et à de nouvelles applications, notamment le traitement, la communication et le chiffrement quantiques. Il s’est toutefois avéré délicat d’ajuster précisément et d’optimiser l’interface physique réelle entre les deux types de matériaux en raison de capacités de contrôle insuffisantes. Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet SuperCONtacts entend surmonter ces limites grâce à une nouvelle technique de fabrication qui conduira à la réalisation d’interfaces supraconducteur-semiconducteur atomiquement précises.

Objectif

The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.

Coordinateur

CONSIGLIO NAZIONALE DELLE RICERCHE
Contribution nette de l'UE
€ 171 473,28
Adresse
PIAZZALE ALDO MORO 7
00185 Roma
Italie

Voir sur la carte

Région
Centro (IT) Lazio Roma
Type d’activité
Research Organisations
Liens
Coût total
€ 171 473,28