European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Groups, operator algebras, and dynamics

Description du projet

Une étude se penche sur l’interaction entre la théorie des groupes, les algèbres d’opérateurs et la dynamique topologique

Financé par le programme Actions Marie Skłodowska-Curie, GOADS est un projet interdisciplinaire qui entend étudier l’interaction entre la théorie des groupes, les algèbres d’opérateurs et la dynamique topologique. Il se concentrera d’abord sur une classe d’algèbres stellaires associées à des actions de semigroupes algébriques, y compris des classes d’exemples provenant de sous-déplacements de groupes de type fini, de modules sur des anneaux de polynômes, des anneaux d’entiers algébriques et des groupes algébriques sur des champs de nombres. La recherche sera également orientée vers les groupes complets topologiques associés aux actions de semigroupes algébriques.

Objectif

The proposed research project fits into the broad programme of studying C*-algebras and groups dynamical origin, and is
highly interdisciplinary in nature; it advances novel interactions among operator algebras, group theory, and topological dynamics. This project has two facets: First, I shall initiate the systematic study of a class of C*-algebras associated with algebraic semigroup actions, including example classes coming from group subshifts of finite type, modules over polynomial rings, rings of algebraic integers, and algebraic groups over number fields. After investigating structural properties of these C*-algebras, including ideal structure, pure infiniteness, Cartans, classifiability, and K-theory, I shall give a careful analysis of the Kubo--Martin--Schwinger (KMS) states for canonical time evolutions on these C*-algebras, and explore a mysterious connection between KMS states and K-theory that has manifested itself in the context of ax+b-semigroups. I will also look for connections between KMS states and entropy of algebraic actions. Second, I shall begin the study of the topological full groups associated with algebraic semigroup actions: I want to establish rigidity results and classify embeddings between these full groups, and I will study group-theoretic properties, including (co)homological finiteness conditions and the Haagerup property. I will then investigate Matui's AH conjecture in this setting, and explore whether non-sofic full groups exist.
The project will strengthen my career by giving me the opportunity to work with leading experts in C*-algebras, group theory, and topological dynamics. It will also give me management skills by co-organising an international workshop, it will
provide new possibilities for collaboration, and it will advance my ability as a researcher, so that I can obtain a permanent
position at a research-oriented university. It will also open up new opportunities for collaboration between Glasgow, Lyon, Oslo, and the US.

Coordinateur

UNIVERSITY OF GLASGOW
Contribution nette de l'UE
€ 212 933,76
Adresse
UNIVERSITY AVENUE
G12 8QQ Glasgow
Royaume-Uni

Voir sur la carte

Région
Scotland West Central Scotland Glasgow City
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 212 933,76