Opis projektu
Badanie wzajemnych oddziaływań między teorią grup, algebrami operatorów i dynamiką topologiczną
Finansowany z działań „Maria Skłodowska-Curie” projekt GOADS to interdyscyplinarny projekt, którego celem jest badanie wzajemnych zależności między teorią grup, algebrami operatorów i dynamiką topologiczną. Jego zespół skupi się najpierw na klasie algebr C* związanych z algebraicznymi działaniami półgrupowymi, w tym przykładowych klas wywodzących się z podrzędnych przesunięć grupowych typu skończonego, modułów nad pierścieniami wielomianowymi, pierścieni algebraicznych liczb całkowitych i grup algebraicznych nad ciałami liczbowymi. Badania będą również ukierunkowane na topologiczne grupy pełne związane z algebraicznymi działaniami półgrupowymi.
Cel
The proposed research project fits into the broad programme of studying C*-algebras and groups dynamical origin, and is
highly interdisciplinary in nature; it advances novel interactions among operator algebras, group theory, and topological dynamics. This project has two facets: First, I shall initiate the systematic study of a class of C*-algebras associated with algebraic semigroup actions, including example classes coming from group subshifts of finite type, modules over polynomial rings, rings of algebraic integers, and algebraic groups over number fields. After investigating structural properties of these C*-algebras, including ideal structure, pure infiniteness, Cartans, classifiability, and K-theory, I shall give a careful analysis of the Kubo--Martin--Schwinger (KMS) states for canonical time evolutions on these C*-algebras, and explore a mysterious connection between KMS states and K-theory that has manifested itself in the context of ax+b-semigroups. I will also look for connections between KMS states and entropy of algebraic actions. Second, I shall begin the study of the topological full groups associated with algebraic semigroup actions: I want to establish rigidity results and classify embeddings between these full groups, and I will study group-theoretic properties, including (co)homological finiteness conditions and the Haagerup property. I will then investigate Matui's AH conjecture in this setting, and explore whether non-sofic full groups exist.
The project will strengthen my career by giving me the opportunity to work with leading experts in C*-algebras, group theory, and topological dynamics. It will also give me management skills by co-organising an international workshop, it will
provide new possibilities for collaboration, and it will advance my ability as a researcher, so that I can obtain a permanent
position at a research-oriented university. It will also open up new opportunities for collaboration between Glasgow, Lyon, Oslo, and the US.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna analiza funkcjonalna algebra operatorów
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2020
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
G12 8QQ Glasgow
Zjednoczone Królestwo
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.