Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Implications of tissue stiffness in growth control during limb regeneration in salamanders (Ambystoma mexicanum)

Project description

Proximity and tissue regeneration capacity

Intriguingly, amputated structures that are far from the torso tend to regenerate at a slower pace compared to structures that are closer to the torso. A differential gradient of cell surface molecules, and hence intercellular adhesions, has been proposed as the main reason behind this observation. The EU-funded ProxDistReg project aims to investigate the biomechanical properties of tissues and how they affect regeneration. Researchers will employ the salamander species Axolotl mexicanum as a model organism and undertake an extensive analysis of amputated limbs at the cell biology, physiology, and gene expression levels. The work will provide important information on tissue regeneration and assist in the future design of biomaterials.

Objective

In several regenerating organisms it has been observed that distally amputated structures grow slower than proximally amputated ones, resulting in an overall time of regeneration that is independent of the tissue to be reformed. This observation suggests that cell proliferation or cell size could be adjusted with the plane of amputation along the proximo-distal (PD) axis, leading to an interesting scaling behaviour. It has been proposed that positional identity in the limb may be encoded as a proximal-to-distal gradient of cell surface molecules, that would in turn alter intercellular adhesions. Thus, it is possible that such differential adhesions are associated to the control of cell growth during regeneration. The central aim of this proposal is to address this question by combining cell biology, mathematical and physical tools, with the ultimate goal of understanding how the biomechanical properties of tissues affect regeneration, which may have important implications for the design of biomaterials aimed at being used for regenerative medicine.
We will tackle this question in the highly regenerative salamander species Axolotl mexicanum, in which limb regeneration is initiated regardless of the amputation plane, and the regenerating limb grows until its size matches the contralateral undamaged one. We will evaluate growth rate and cell cycle of regenerating limbs amputated at different levels, and mathematically describe cell proliferation patterns. We will characterize several cell surface and extracellular matrix molecules along the PD axis, and measure tissue mechanics in vivo. Furthermore, we will for the first time, evaluate the Hippo pathway in salamanders, an important modulator of cell growth in response to several physical inputs, as the causal link between increased tissue stiffness and decreased proliferation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITAET DRESDEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 174 806,40
Address
HELMHOLTZSTRASSE 10
01069 DRESDEN
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 174 806,40
My booklet 0 0