Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The role of chromosome conformation in DNA double-strand break repair

Project description

Mechanistic insight into DNA repair

To ensure high-fidelity transmission of genetic information, eukaryotic cells have evolved mechanisms for repairing DNA damage such as double strand-breaks caused by ionising radiation. The homologous recombination pathway is a key DNA repair mechanism that uses the intact chromosome as a template to restore the missing information. The EU-funded DSB Architect project is interested to understand the role of 3D chromosome conformation in this process. Researchers will develop novel technology to characterise the intermolecular and intramolecular interactions and identify key proteins responsible for shaping chromosome conformation.

Objective

The integrity of eukaryotic genomes is constantly challenged by various endogenous and exogenous insults, whereby DNA double-strand breaks (DSBs) are particularly problematic. DSBs can be repaired by multiple pathways, but only the homologous recombination (HR) pathway ensures error-free repair. HR restores missing information around the lesion based on topological interactions with a homologous region on a distinct DNA molecule. HR-directed repair can function across homologous chromosomes in diploid organisms, but is much more efficient between sister chromatids in replicated chromosomes, indicating an important role of chromosome conformation in repair. Sister chromatids are organized by a dynamic interplay between cohesin-mediated loop extrusion, cohesin-mediated sister linkage, and chromatin-based affinity interactions. How these activities shape sister chromatids to support DNA repair is unclear. The proposed project aims to reveal how sister chromatid conformation governs DSB repair efficiency and pathway choice in human cells and to identify and characterize the key molecular factors regulating chromosome conformation for efficient DSB repair. Understanding how intra- and inter-molecular topological interactions contribute to DNA repair will become possible by using a new chromosome conformation capture technology developed in the hosting lab (sister-chromatid sensitive Hi-C). This technology will be combined with a system for acute DSB induction, automated imaging and genomic profiling of DNA repair factors, and targeted protein degradation of cohesin and its regulators to elucidate topological interactions underlying DSB repair. The proposed project will provide insights into how the core machinery shaping the three-dimensional organization of chromosomes contributes to the maintenance of genome integrity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Net EU contribution
€ 174 167,04
Address
DR BOHRGASSE 3
1030 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 174 167,04