Descripción del proyecto
Un dispositivo microfluídico de ingeniería de tejidos para el desarrollo de fármacos
Los cultivos celulares en tres dimensiones (3D) para la investigación médica y la medicina regenerativa son fundamentales para lograr innovaciones médicas más precisas y éticas. Los modelos 3D sin matriz creados por ingeniería de tejidos que imitan las características funcionales de los tejidos naturales respaldan la búsqueda de biomarcadores, el desarrollo de fármacos y los estudios de toxicología, a la vez que proporcionan una alternativa al uso de animales en los ensayos y la investigación de fármacos. En el proyecto SMD-SPH, financiado por las Acciones Marie Skłodowska-Curie, se está desarrollando un sistema microfisiológico que comprende un modelo de cultivo celular en 3D con perfusión controlable para el contacto continuo con factores de crecimiento. Su objetivo es crear un tejido nativo funcional y observar los parámetros fisiológicos cruciales. Por primera vez, se utilizarán células madre humanas derivadas del tejido adiposo para construir un sistema microfisiológico escalable.
Objetivo
In regenerative medicine, in vitro tissue engineering products (3D cell cultures) for in vivo therapy are critical for more accurate and more humane medical innovation. Tissue engineered scaffold-free 3D models that exhibit functional hallmarks of native tissues improve our search for biomarkers, drug testing/development and toxicology with more accurate models, while supporting the development of alternative methods to animal use in drug testing, as stated by the Directive (2010/63/EU) established the European Centre for the validation of alternative methods (ECVAM). To replace animal testing, it is important to develop microphysiological systems and ‘body-on-chip’ approaches that allow to account for organ-to-organ interactions in vitro, at a reasonable cost. Yet, most current bioreactors are expensive, designed for organ transplant (thus focused on a single organ) and poorly designed for miniaturization and scale-up. In SMD-SPH, we will develop a microphysiological systems with the following design requirement: a 3D cell culture model, with a continuous and controllable perfusion system for continuous contact with morphogens (growth factors) to obtain a functional native tissue and monitoring crucial parameters of cell physiology, compatible with scale-up manufacturing. To the best of our knowledge, it is the first time in scientific literature that human adipose tissue-derived stem cells are used to build human white adipose tissue in a novel and scalable microphysiological system. This project meets the convergence of microfluidics and scaffold-free 3D culture models offering a reliable alternative for drug and toxicology assays, besides offer a scalable and reproductible system for future integration into a human-on-a-chip and high-troughput assays. Once an initial prototype is obtained, we will start dissemination to stakeholders and seek early adopters, cosmetic industries.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- medical and health sciencesmedical biotechnologytissue engineering
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- medical and health sciencesbasic medicinephysiology
- engineering and technologyother engineering and technologiesmicrotechnologyorgan on a chip
- medical and health sciencesbasic medicinetoxicology
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
75015 Paris
Francia
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.