Project description
Research could remove barriers to directly converting methane to ethylene
Direct conversion of methane, the main constituent of natural gas, to ethylene, a hydrocarbon widely used in chemical products, has long been the holy grail of industrial chemistry. Oxidative coupling of methane (OCM) is deemed to be a potentially efficient method, but it has not yet become feasible. Increased understanding of how the reaction proceeds in space and time in the reactor and advanced efficient catalysts are crucial for rendering OCM commercially practical. Funded by the Marie Skłodowska-Curie Actions programme, the KinGrad-OCM project aims to develop new on-site techniques for studying the OCM reaction both in conventional furnace-heated and microwave-assisted reactors.
Objective
Abundant availability of methane makes this compound being a potential substitute to crude oil for ethylene production if such chemical conversion is feasible. The direct transformation of methane into olefins via Oxidative Coupling of Methane (OCM) is nowadays still considered as a “dream” reaction for the direct production of ethylene from methane. This process remains a huge challenge in chemical engineering research. A better understanding on how the reaction proceeds in space and time in the reactor (mechanism and kinetics of the process) and the development of advanced efficient catalysts are crucial steps to achieve the industrial implementation of the process. The traditional methodology to evaluate catalytic performance and addressing kinetic analyses, which consists on the assumption of a constant temperature for the catalytic bed and the evaluation of the gas composition at the reactor outlet, seems not to be a suitable strategy for chemical processes such as OCM. KinGrad-OCM aims to set up a new methodological approach based on the application of operando spatial reactor analysis techniques for the study of the OCM reaction both in conventional furnace heated and microwave-assisted reactors. A particular focus is given to the assessment of reaction kinetic by the operando spatial reactor analysis through the physicochemical gradients present in the reactors. The successful application of the gradient approach, proposed in KinGrad-OCM, for assessing kinetic studies will yield a new perspective to both catalyst and reactor design not only for the OCM process but also for other complex chemical reactions.
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis
- engineering and technology chemical engineering
- natural sciences chemical sciences organic chemistry aliphatic compounds
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
                                Keywords
                                
                                    
                                    
                                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
                                        
                                    
                                
                            
                            
                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
            Programme(s)
            
              
              
                Multi-annual funding programmes that define the EU’s priorities for research and innovation.
                
              
            
          
                      Multi-annual funding programmes that define the EU’s priorities for research and innovation.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      MAIN PROGRAMME
                                    
 See all projects funded under this programme
- 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
 See all projects funded under this programme
            Topic(s)
            
              
              
                Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
                
              
            
          
                      
                  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
            Funding Scheme
            
              
              
                Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
                
              
            
          
                      Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
              Call for proposal
                
                  
                  
                    Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
                    
                  
                
            
                          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        