Project description DEENESFRITPL Choreographing the emergence of 'light bullets' for next-generation devices Harnessing the movement of electrons and photons has enabled tremendous progress in areas from biomedicine and renewable energy to quantum engineering and communications. Since the first report of their experimental generation a little more than a decade ago, solitons have been ushering in a new era of innovation. These packets of electromagnetic energy are also called light bullets in recognition of their particle-like stable propagation in space and time – highly sought-after characteristics for numerous applications. The EU-funded NOSTER project will apply sophisticated analytical and numerical methods to understand what governs the formation and propagation of solitons. Getting a handle on their complex dynamics will pave the way to choreographing them for next-generation devices. Show the project objective Hide the project objective Objective The NOSTER project is about unveiling the dynamics and features of spatiotemporal coherent structures emerging in multimode optical fibers, such as spatiotemporal solitons, also known as light bullets. Solitons are particle-like states, emerging due to a double balance between linear and nonlinear processes, that maintain their shape while propagating in a medium. Solitons arise in a large variety of different natural media, ranging from hydrodynamics and plasma physics, to nonlinear optics and biology. In nonlinear optics, the emergence of solitons is related to the light confinement in time or space. One basic example of a system yielding to this type of state are single mode optical fibers, where the Kerr nonlinearity counteracts the spreading of the light produced by the chromatic dispersion. In multimode optical fibers, temporal and spatial effects, such as chromatic dispersion and diffraction, can occur simultaneously and counteract the Kerr nonlinearity, leading to the space-time confinement of light, and therefore, to the formation of much more complex coherent structures. My approach in this project is to predict and analyze the generation of localized spatiotemporal states, in particular light bullets and vortices, from a pattern forming and bifurcation theory perspective. Applying advanced analytical and numerical methods, I will first elucidate the origin of light bullets, characterizing their dynamics and bifurcation structure. In a second step, I will study the dynamical properties of optical vortices and the potential transition to optical turbulence. In both cases, their interaction dynamics, and the influence of high-order effects and losses will be analyzed. The understanding of such complex dynamics is crucial, and it will enable a tremendous breakthrough in many technological areas such as high-power multimode fiber lasers, optical communication systems, and a large variety of other industrial and biomedical applications. Fields of science natural sciencesmathematicsapplied mathematicsmathematical physicsnatural sciencesmathematicsapplied mathematicsdynamical systemsnatural sciencesphysical sciencesopticsfibre opticsnatural sciencesphysical sciencesopticsnonlinear opticsnatural sciencesmathematicsapplied mathematicsnumerical analysis Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2020 - Individual Fellowships Call for proposal H2020-MSCA-IF-2020 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA Net EU contribution € 171 473,28 Address Piazzale aldo moro 5 00185 Roma Italy See on map Region Centro (IT) Lazio Roma Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00