Project description
Nanolasers offer great promise for deep imaging of living tissues
Interfacing biology at the nanometer scale with lasers will open new avenues for the integration of small sensors and actuators into biological tissue. Scientists are striving to create increasingly smaller laser systems that can concentrate high optical powers in small volumes and consume less energy. This is expected to lead to important insights about the brain and how to interface it, giving rise to more powerful emergent technologies for the next generation of Brain-Computer interfaces. Funded by the Marie Skłodowska-Curie Actions programme, the Neuralase project aims to extend nanolaser use to in vivo studies to bridge different scientific disciplines exploring the physics and engineering of biological sensing.
Objective
Summary
Nanolasers offer the ultimate photonic gadget with unique properties as biosensors and actuators. Lasers at the nanoscale can concentrate high optical powers in small volumes and use a fraction of the power required to drive a conventional laser. Recently, nanolasers and nanoresonators have seen use for biosensing, with the focus so far on in-vitro biochemistry. Translating this approach to in-vivo is complex but promises to link relevant in-vivo physiological information with chemical pathways. This project aims to integrate photonic architectures for in-vivo deep-tissue exploration and to translate this technology to areas where probing the local environment with light has an immediate impact, such as the Brain. My proposed research thus bridges different scientific disciplines exploring the physics of biological sensing.
I foresee 3 major efforts to succeed in this research:
1 – Design of micro- and nanocavities operating in the IR.
2 – In vitro characterization through highly scattering media.
3 – In vivo investigations for deep-tissue sensing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- engineering and technology environmental biotechnology biosensing
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.